Is the following proof that the rationals are dense in the reals valid?(adsbygoogle = window.adsbygoogle || []).push({});

Theorem: [tex]\forall x,y\in\mathbb{R}:x<y, \exists p\in\mathbb{Q}: x<p<y[/tex] Viewing x and y as Dedekind cuts (denoting the cuts as x* and y*), x* is a proper subset of y*, hence there exists a rational in x* but not in y*, i.e. there is a rational between x and y.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Proof that the rationals are dense

**Physics Forums | Science Articles, Homework Help, Discussion**