MHB Proof that the solutions are algebraic functions

  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Functions Proof
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

I am looking at the following:

View attachment 5008

View attachment 5009

View attachment 5010 View attachment 5011

View attachment 5012 I haven't really understood the proof...

Why do we consider the differential equation $y'=P(x)y$ ? (Wondering)

Why does the sentence: "If $(3)_{\mathfrak{p}}$ has a solution in $\overline{K}_{\mathfrak{p}}(x)$, then $(3)_{\mathfrak{p}}$ has also a solution $y_{\mathfrak{p}}$ in $\overline{K}_{\mathfrak{p}}[x]$." stand? (Wondering)
 

Attachments

  • id.PNG
    id.PNG
    37.7 KB · Views: 108
  • gr.PNG
    gr.PNG
    14 KB · Views: 102
  • tche.PNG
    tche.PNG
    10.2 KB · Views: 110
  • tcheg1.PNG
    tcheg1.PNG
    12 KB · Views: 105
  • tcheg2.PNG
    tcheg2.PNG
    27.1 KB · Views: 110
Physics news on Phys.org
mathmari said:
Why do we consider the differential equation $y'=P(x)y$ ?

Since the proof for Grothedieck's problem stands for $n=1$, we consider a differential equation of the form $\alpha_0(x)y'+\alpha_1(x) y=0, \alpha_i(x)\in K[x]$.
So $\alpha_0(x)y'+\alpha_1 (x) y=0 \Rightarrow \alpha_0(x)y'=-\alpha_1(x)y \Rightarrow y'=P(x)y$, where $P(x)=-\frac{\alpha_1(x)}{\alpha_0(x)}\in K(x)$.

Is this correct? (Wondering)
mathmari said:
Why does the sentence: "If $(3)_{\mathfrak{p}}$ has a solution in $\overline{K}_{\mathfrak{p}}(x)$, then $(3)_{\mathfrak{p}}$ has also a solution $y_{\mathfrak{p}}$ in $\overline{K}_{\mathfrak{p}}[x]$." stand? (Wondering)

$\overline{K}$ is the algebraic closure, right?

We have that any polynomial in a field $K[x]$ factors into linear factors in the algebraic closure $\overline{K}[x]$. Does this hold also for the elements of a field of fraction $K(x)$?

Also how do we conclude that $\beta_i \in \mathbb{Q}$ ? (Wondering)
 
Thread 'Determine whether ##125## is a unit in ##\mathbb{Z_471}##'
This is the question, I understand the concept, in ##\mathbb{Z_n}## an element is a is a unit if and only if gcd( a,n) =1. My understanding of backwards substitution, ... i have using Euclidean algorithm, ##471 = 3⋅121 + 108## ##121 = 1⋅108 + 13## ##108 =8⋅13+4## ##13=3⋅4+1## ##4=4⋅1+0## using back-substitution, ##1=13-3⋅4## ##=(121-1⋅108)-3(108-8⋅13)## ... ##= 121-(471-3⋅121)-3⋅471+9⋅121+24⋅121-24(471-3⋅121## ##=121-471+3⋅121-3⋅471+9⋅121+24⋅121-24⋅471+72⋅121##...
Back
Top