MHB Proof that the solutions are algebraic functions

  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Functions Proof
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

I am looking at the following:

View attachment 5008

View attachment 5009

View attachment 5010 View attachment 5011

View attachment 5012 I haven't really understood the proof...

Why do we consider the differential equation $y'=P(x)y$ ? (Wondering)

Why does the sentence: "If $(3)_{\mathfrak{p}}$ has a solution in $\overline{K}_{\mathfrak{p}}(x)$, then $(3)_{\mathfrak{p}}$ has also a solution $y_{\mathfrak{p}}$ in $\overline{K}_{\mathfrak{p}}[x]$." stand? (Wondering)
 

Attachments

  • id.PNG
    id.PNG
    37.7 KB · Views: 108
  • gr.PNG
    gr.PNG
    14 KB · Views: 105
  • tche.PNG
    tche.PNG
    10.2 KB · Views: 112
  • tcheg1.PNG
    tcheg1.PNG
    12 KB · Views: 107
  • tcheg2.PNG
    tcheg2.PNG
    27.1 KB · Views: 113
Physics news on Phys.org
mathmari said:
Why do we consider the differential equation $y'=P(x)y$ ?

Since the proof for Grothedieck's problem stands for $n=1$, we consider a differential equation of the form $\alpha_0(x)y'+\alpha_1(x) y=0, \alpha_i(x)\in K[x]$.
So $\alpha_0(x)y'+\alpha_1 (x) y=0 \Rightarrow \alpha_0(x)y'=-\alpha_1(x)y \Rightarrow y'=P(x)y$, where $P(x)=-\frac{\alpha_1(x)}{\alpha_0(x)}\in K(x)$.

Is this correct? (Wondering)
mathmari said:
Why does the sentence: "If $(3)_{\mathfrak{p}}$ has a solution in $\overline{K}_{\mathfrak{p}}(x)$, then $(3)_{\mathfrak{p}}$ has also a solution $y_{\mathfrak{p}}$ in $\overline{K}_{\mathfrak{p}}[x]$." stand? (Wondering)

$\overline{K}$ is the algebraic closure, right?

We have that any polynomial in a field $K[x]$ factors into linear factors in the algebraic closure $\overline{K}[x]$. Does this hold also for the elements of a field of fraction $K(x)$?

Also how do we conclude that $\beta_i \in \mathbb{Q}$ ? (Wondering)
 
Thread 'Derivation of equations of stress tensor transformation'
Hello ! I derived equations of stress tensor 2D transformation. Some details: I have plane ABCD in two cases (see top on the pic) and I know tensor components for case 1 only. Only plane ABCD rotate in two cases (top of the picture) but not coordinate system. Coordinate system rotates only on the bottom of picture. I want to obtain expression that connects tensor for case 1 and tensor for case 2. My attempt: Are these equations correct? Is there more easier expression for stress tensor...
Back
Top