A. Neumaier said:
In the TI, ##\rho## is a beable, since it is uniquely determined by the collection of all q-expectations. It is just not easily macroscopically interpretable, and hence has a subordinate role in the interpretation.
How can ##\rho## (assuming it's what's called the statistical operator in the standard interpretation) be a "beable", if it depends on the picture of time evolution chosen? The same holds for operators representing observables.
What's a physical quantity (not knowing, what precisely "beable" means, I rather refer to standard language) are
$$P(t,a|\rho)=\sum_{\beta} \langle t, a,\beta|\rho(t)|t,a,\beta \rangle,$$
where ##|t,a,\beta## and ##\rho(t)## are the eigenvectors of ##\hat{A}## and ##\rho(t)## the statistical operator, evolving in time according to the chosen picture of time evolution. In the standard minimal interpretation ##P(t,a|\rho)## is the probability for obtaining the value ##a## when measuring the observable ##A## precisely at time ##t##.
Now, before one discuss or even prove anything concerning an interpretation, one must define, what's the meaning of this expression in the interpretation. I still didn't get, as what this quantity is interpreted in the thermal interpretation, because you forbid it to be interpreted as probabilities.
Also it doesn't help to discuss about a fiction like the "state of the universe". This is something which is not observable even in principle.
On the other hand, I think it's pretty save to say the universe, on a large space-time scale, is close to local thermal equilibrium, as defined in standard coordinates of the FLRM metric, where the CMBR is in local thermal equilibrium up to tiny fluctuations of the relative order of ##10^{-5}##.