Proof using the closed graph theorem

Click For Summary
The discussion revolves around proving that a sequence x is square summable using the Closed Graph Theorem in functional analysis. The key point is to show that the operator Tx, defined as the entrywise product of sequences, has a closed graph. It is established that convergence in any ℓ^p space implies entrywise convergence, which helps demonstrate that if the sequence y converges in ℓ^2, then the product sequence xy converges in ℓ^1. The conclusion drawn is that the operator Tx is indeed closed, confirming that x is square summable. The discussion highlights the simplicity of the solution once the closed graph property is understood.
A_B
Messages
87
Reaction score
1
Hi,

I'm stuck on a problem in functional analysis. Let x be a sequence on the Natural nummers such that for any square summable sequence y, the product sequence xy is absolutely summable. Then x is square summable.

Hint : Use the Closed graph theorem.

If I can prove the map Tx : y -> xy had a closed graph then It Follows from the Closed graph theorem that Tx is bounded and therefore that x is square summable, but I can't seem to show that the graph is Closed. Am I following the right path? Any hints?Thanks
 
Physics news on Phys.org
Yes, you are on the right path. You need to show that your operator ##T_x:\ell^2\to\ell^1##, ##T_x y = xy##, where the product means entrywise product is closed. This fact is very simple, almost a triviality: it follows from the fact that convergence in any ##\ell^p## implies the entry wise convergence.

Let me explain; to avoid mess with double indices, I'll use the "functional notation" for sequences, i.e. a sequence ##x## will be ##x=(x(1), x(2), \ldots)##. Since ##|y(k)| \le \|y\|_{\ell^p}## (for all ##k## and ##p##) we conclude that if ##\|y_n-y\|_{\ell^2} \to 0## then $$\lim_{n\to\infty} y_n(k) = y(k)$$ for all ##k##. Similarly, if additionally ##\|x y_n -z\|_{\ell^1}\to 0## then for all ##k## $$\lim_{n\to\infty} x (k)y_n(k) =z(k).$$ But on the other hand we already know that ##\lim_{n\to\infty} y_n(k) = y(k)##, so $$\lim_{n\to\infty} x (k)y_n(k) =x(k)y(k),$$ which means that ##z=xy##.

So the operator ##T_x## is closed.
 
  • Like
Likes A_B
As is so often the case with mathematics,the solution to the problem seems so obvious once it is known. This concludes for me a few days of staring at a blank page.

Thank You, Hawkeye. You saved me a lot of time.
 
We all know the definition of n-dimensional topological manifold uses open sets and homeomorphisms onto the image as open set in ##\mathbb R^n##. It should be possible to reformulate the definition of n-dimensional topological manifold using closed sets on the manifold's topology and on ##\mathbb R^n## ? I'm positive for this. Perhaps the definition of smooth manifold would be problematic, though.

Similar threads

  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 11 ·
Replies
11
Views
5K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K