Prop Shaft load parked on a grade

  • Thread starter JGM
  • Start date
  • #1
JGM
3
1
What would the torque on a driveshaft be for a 8 ton vehicle in park on a 16% grade? Tire radius is 19". Axle ratio it 7.1.
 

Answers and Replies

  • #2
berkeman
Mentor
59,420
9,539
What would the torque on a driveshaft be for a 8 ton vehicle in park on a 16% grade? Tire radius is 19". Axle ratio it 7.1.
Welcome to the PF.

Is this question for schoolwork? What is the context of the question?
 
  • #3
JGM
3
1
Welcome to the PF.

Is this question for schoolwork? What is the context of the question?
Trying to determine the loads on an output shaft of a transmission when parked on a grade with different axle ratios. Not for school work. Just general knowledge.
 
  • #4
jack action
Science Advisor
Insights Author
Gold Member
2,077
3,192
If the rear wheels support the entire load caused by the slope, the force acting at the rear tires is ##F_w = W\sin\theta##, where ##W## is the weight of the vehicle and ##\theta## is the angle of the slope (reference). ##100\tan\theta = \%slope## to find the angle of the slope (reference).

The wheel torque produced is ##T_w = F_w r##, where ##r## is the tire radius.

The gear ratio reduces the torque seen by the driveshaft, so ##T_d = \frac{T_w}{GR}##, where ##GR## is the axle gear ratio.

##\theta = \arctan\frac{16}{100} = 9.1°##

##F_w = (16000\ lb)\sin9.1° = 2530\ lb##

##T_w = (2530.5\ lb) * (1.583\ ft) = 4006\ lb.ft##

##T_d = \frac{4006\ lb.ft}{7} = 572\ lb.ft##
 
  • #5
JGM
3
1
If the rear wheels support the entire load caused by the slope, the force acting at the rear tires is ##F_w = W\sin\theta##, where ##W## is the weight of the vehicle and ##\theta## is the angle of the slope (reference). ##100\tan\theta = \%slope## to find the angle of the slope (reference).

The wheel torque produced is ##T_w = F_w r##, where ##r## is the tire radius.

The gear ratio reduces the torque seen by the driveshaft, so ##T_d = \frac{T_w}{GR}##, where ##GR## is the axle gear ratio.

##\theta = \arctan\frac{16}{100} = 9.1°##

##F_w = (16000\ lb)\sin9.1° = 2530\ lb##

##T_w = (2530.5\ lb) * (1.583\ ft) = 4006\ lb.ft##

##T_d = \frac{4006\ lb.ft}{7} = 572\ lb.ft##

Shouldn't this include the acceleration of gravity?
F_w = 16000 Lbs* 32.174 ft/s2
 
  • #6
52
4
Shouldn't this include the acceleration of gravity?
F_w = 16000 Lbs* 32.174 ft/s2


pounds is a unit for weight not mass, already includes gravity.
 
  • Like
Likes jack action
  • #7
Baluncore
Science Advisor
8,964
3,546
I used SI units.
Mass = 8000 kg.
Force due to gravity = 8000 * 9.8 = 78400 newton.
Wheel radius is 39” = conveniently 1 metre.
16% grade = 9.09 deg; Sin(9.09°) = 0.158
7:1 axle ratio.
Drive shaft torque = 1m * 78400N * 0.158 / 7 = 1769.5 Nm
1769.5 Nm = 1305.1 ft.lbs
This is quite different to jack action's 572. ft.lb
 
Last edited:
  • #8
jack action
Science Advisor
Insights Author
Gold Member
2,077
3,192
I used SI units.
Mass = 8000 kg.
Force due to gravity = 8000 * 9.8 = 78400 newton.
Wheel radius is 39” = conveniently 1 metre.
16% grade = 9.09 deg; Sin(9.09°) = 0.158
7:1 axle ratio.
Drive shaft torque = 1m * 78400N * 0.158 / 7 = 1769.5 Nm
1769.5 Nm = 1305.1 ft.lbs
This is quite different to jack action's 572. ft.lb
That is because we don't use the same numbers:
  • I use 1 ton = 2000 lb and you use 1 tonne = 1000 kg;
  • I use a wheel radius of 19" and you use a wheel radius of 39".
Other than that, everything is the same!:smile:
 
  • #9
Baluncore
Science Advisor
8,964
3,546
Fixing the radius to 19” and using a mass of 8 Short Tons.
Mass 8 short ton = 7257.5 kg.
Force due to gravity = 7257.5 * 9.8 = 71123.5 newton.
Wheel radius is 19” = inconveniently 0.4826 metre.
16% grade = 9.09 deg; Sin(9.09°) = 0.158
7:1 axle ratio.
Drive shaft torque = 0.4826 * 71123.5 * 0.158 / 7 = 774.75 Nm
774.75 Nm = 571.5 ft.lbs
We agree.

In Australia the standard Ton was a Long Ton = 1016.05 kg = 2240 lbs.
In 1966 that was replaced by the metric Tonne = 1000 kg = 2205 lbs.

Are vehicle weights in the USA always specified in Short Tons = 907.18 kg = 2000 lbs ?
 
  • #10
jack action
Science Advisor
Insights Author
Gold Member
2,077
3,192
Are vehicle weights in the USA always specified in Short Tons = 907.18 kg = 2000 lbs ?
https://en.wikipedia.org/wiki/Short_ton

I'm in Canada and a ton has always been 2000 lb around here. But we're with the SI system as well, so this is not a usual unit for us nowadays (unless we have to do business with our neighbor).

As for truck classification, it is done in pounds, so no problem there:

xskssrdsi0vac40ao6ij.jpg
 

Related Threads on Prop Shaft load parked on a grade

Replies
10
Views
5K
Replies
3
Views
6K
  • Last Post
Replies
2
Views
9K
Replies
0
Views
3K
Replies
2
Views
4K
Replies
1
Views
3K
  • Last Post
Replies
2
Views
1K
Replies
6
Views
9K
Replies
1
Views
2K
  • Last Post
Replies
3
Views
996
Top