Propagation of uncertainty with some constants

Click For Summary
SUMMARY

This discussion focuses on the propagation of uncertainty in the function ##\frac{V}{E} = \frac{1}{\sqrt{1 + (\omega r c)^2}}##, where the constants are defined as r = 1000 and c = ##5 \cdot 10^{-8}##. The original poster (OP) seeks to calculate the uncertainty associated with a value of ##100 \pm 0.1##. Key insights include the importance of clearly defining variables and the recommendation to use algebraic expansion to clarify the propagation of uncertainty, particularly by substituting ##\omega + \delta \omega## into the equation and simplifying.

PREREQUISITES
  • Understanding of uncertainty propagation in mathematical functions
  • Familiarity with algebraic manipulation and calculus concepts
  • Knowledge of the symbols and notation used in physics and engineering
  • Basic understanding of constants and variables in equations
NEXT STEPS
  • Learn about the principles of uncertainty propagation in experimental physics
  • Study algebraic expansion techniques for simplifying complex equations
  • Explore Differential Calculus, particularly in relation to uncertainty analysis
  • Investigate the use of symbolic computation tools for uncertainty calculations
USEFUL FOR

This discussion is beneficial for students and professionals in physics, engineering, and mathematics who are involved in uncertainty analysis and require clarity in variable definitions and algebraic methods for solving complex equations.

happyparticle
Messages
490
Reaction score
24
TL;DR
How to calculate the propagation of uncertainty with some constants
Hi,

I have a value ##100 \pm 0.1## and a function ##\frac{V}{E} = \frac{1}{\sqrt{1 + (\omega r c)^2}}## and I would like to find the uncertainty.
Where r = 1000 and c = ##5 \cdot 10^{-8}## are constants.
However, I'm not sure to understand how.

Here's what I think and did.
Since I multiply the uncertainty by a constant.

##\sigma= (1000 \cdot 5 \cdot 10^{-8}) \cdot 0.1 = ##

and then for the power
##\sigma= \frac{2 (5\cdot 10^{-6}) \cdot (\sqrt{\omega r c)}}{\omega r c}##

Where I'm using this formula ##\frac{\sigma_f}{f} = \frac{n \sigma_a}{a}##
 
Physics news on Phys.org
Say ##Q \equiv V/E##, then ##\sigma(Q) = (\partial Q/\partial \omega) \sigma(\omega) = -(\omega r^2 c^2 / [1+(\omega rc)^2]^{3/2}) \sigma(\omega)##
 
EpselonZero said:
Summary:: How to calculate the propagation of uncertainty with some constants

Hi,

I have a value ##100 \pm 0.1## and a function ##\frac{V}{E} = \frac{1}{\sqrt{1 + (\omega r c)^2}}## and I would like to find the uncertainty.
What variable is the value that you have? And what uncertainty do you want to find?
 
Dale said:
What variable is the value that you have? And what uncertainty do you want to find?
The value is 100 and since the value has an uncertainty If I use this value in a formula I have to take into account the propagation of this uncertainty.
 
EpselonZero said:
The value is 100
The value of what is 100? I see three possible variables that could be 100, but you just keep saying that “the value” is 100 without any hint which value you are talking about.

I am done here. You have wasted people’s time here twice. I could have already answered your question if you had bothered to be clear either the first time or when I asked for clarification. I am not going to waste my time any more.
 
  • Like
Likes   Reactions: Vanadium 50
100 is just an arbitrary variable, it could be 1000 it could be 10. I gave an example to show exactly what I meant. I could use any other function with 1 variable and some constant. It could be ##\omega##, r or c. That is why I put those 3 together. However, since I wrote that r = 1000 and c = 5E-8, I don't know what you mean?

I don't understand why you tell me this is not clear and that I waste people's time. I thought it was obvious that I was talking about ##\omega##, I mean I didn't even think about if it was clear or not, I just wrote as it, since r and c has their values, I really thought it was obvious, my bad if it wasn't.

Maybe I thought It was clear because I don't understand this concept really well, which is possible and that's why I'm asking this question.
 
Last edited by a moderator:
If the OP had only made it clearer by explicitly choosing one of ω, r or c then there would be no problem here. It was probably 'too obvious' for him.
It does show, however, how the algebraic approach make things much clearer (albeit a bit less friendly, initially). Just expanding the equation with ω replaced by ω+δω would show what's going on. Ignore terms higher than δω2 and you're there.
 
ergospherical said:
@EpselonZero I wrote down the answer in post #2, does it make sense?
Yes - except that it's very minimalist for the OP. It's actually harder, conceptually than your two line answer implies. I suspect that answer just appeared as a bit of a blur and he passed over it to encounter getting his backside kicked about bad presentation :wink:.
@EpselonZero The OP needed help digging himself out of the quandary.
I'd suggest that
1. Numbers should be avoided; stick with all the symbols until the end.
2. Add the uncertainty δω to ω and insert (ω+δω) where you had ω. Expand the resulting expression and ignore terms with δω2 and then reach for your calculator.
I know that's the basis of Differential Calculus but there's no harm in being explicit when explaining things to an elementary question.
 
  • Like
Likes   Reactions: ergospherical

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 9 ·
Replies
9
Views
4K
  • · Replies 23 ·
Replies
23
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K