MHB Prove $1<sin\,\theta + cos\,\theta \leq \sqrt 2$ for $0<\theta <90^o$

  • Thread starter Thread starter Albert1
  • Start date Start date
Click For Summary
The discussion focuses on proving the inequality $1 < \sin \theta + \cos \theta \leq \sqrt{2}$ for angles in the range $0 < \theta < 90^\circ$. Participants explore geometric interpretations to demonstrate the lower bound of the sum being greater than one. They also analyze the upper bound, showing that the maximum value occurs at $\theta = 45^\circ$. The use of trigonometric identities and properties of right triangles is emphasized in the proofs. The conversation concludes with a consensus on the validity of the geometric approach to establish the inequality.
Albert1
Messages
1,221
Reaction score
0
$0<\theta <90^o$
using geometry to prove the following:
$1<sin\,\, \theta + cos\,\,\theta \leq \sqrt 2$
 
Mathematics news on Phys.org
Albert said:
$0<\theta <90^o$
using geometry to prove the following:
$1<sin\,\, \theta + cos\,\,\theta \leq \sqrt 2$
my soluion
$A,B,C,D$ are four points on a circle, with diameter $\overline {AC}= 1$
let :$\angle DAC=\theta , \angle CAB=\angle BCA=45^o $, then we have:
$\overline {AD}=cos\theta, \overline {CD}=sin\theta, \overline {AB}=\overline {BC}=\dfrac {\sqrt 2}{2}$
it is easy to see $cos\,\theta +sin\, \theta =\overline {AD}+\overline {CD}>\overline {AC}=1$
also by Ptolemy's theorem we have :
$\overline {AB}\times \overline {CD}+\overline {BC}\times\overline {AD}=\overline {AC}\times \overline {BD}=\overline {BD}\leq 1$
that is :$\dfrac {\sqrt 2}{2} sin\, \theta+\dfrac {\sqrt 2}{2} cos\, \theta\leq 1$
or $sin \theta+cos \theta \leq \sqrt 2$
 
Last edited:
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
8K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 13 ·
Replies
13
Views
6K
  • · Replies 70 ·
3
Replies
70
Views
5K
  • · Replies 5 ·
Replies
5
Views
2K