Prove a^2_1+3a^2_2+5a^2_3+....+(2n−1)a^2_n≤1

  • Context: MHB 
  • Thread starter Thread starter lfdahl
  • Start date Start date
Click For Summary

Discussion Overview

The discussion centers around proving the inequality \(a_1^2 + 3a_2^2 + 5a_3^2 + \ldots + (2n-1)a_n^2 \le 1\) under the constraints that \(a_1 \ge a_2 \ge \ldots \ge a_n \ge 0\) and \(\sum_{i=1}^{n} a_i = 1\). The scope includes mathematical reasoning and potential solutions to the problem.

Discussion Character

  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • Some participants reiterate the problem statement and constraints without providing a solution.
  • Several participants express agreement with each other's contributions, suggesting a collaborative atmosphere.
  • One participant indicates they have a solution, but does not provide details in the posts.
  • Another participant mentions a "short and elegant solution," implying alternative approaches may exist.

Areas of Agreement / Disagreement

There appears to be no consensus on a definitive solution, as multiple participants express their own solutions or approaches without resolving the inequality. The discussion remains open with various contributions.

Contextual Notes

Participants have not provided detailed mathematical steps or justifications for their proposed solutions, leaving the discussion somewhat incomplete in terms of rigorous proof.

lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
- except for this one: :) Given: $a_1 \ge a_2 \ge .. \ge a_n \ge 0$ and the constraint: $\sum_{i=1}^{n}a_i = 1$.

Prove, that

\[a_1^2+3a_2^2+5a_3^2+...+(2n-1)a_n^2 \le 1\]
 
Mathematics news on Phys.org
lfdahl said:
- except for this one: :) Given: $a_1 \ge a_2 \ge .. \ge a_n \ge 0$ and the constraint: $\sum_{i=1}^{n}a_i = 1$.

Prove, that

\[a_1^2+3a_2^2+5a_3^2+...+(2n-1)a_n^2 \le 1\]
my solution:
using $AP\geq GP$
let $A=a_1^2+3a_2^2+5a_3^2+...+(2n-1)a_n^2$
for $a_1+a_2+------+a_n=1\geq n(\sqrt [n]{a_1a_2----a_n})=B$
we have :$max(B)$ will occur at $a_1=a_2=----=a_n=\dfrac{1}{n}$
so $max(A)\leq (1+3+5+----+(2n-1))\times \dfrac{1}{n^2}$
$=\dfrac {2n^2}{2n^2}=1$
 
Last edited:
Albert said:
my solution:
using $AP\geq GP$
let $A=a_1^2+3a_2^2+5a_3^2+...+(2n-1)a_n^2$
for $a_1+a_2+------+a_n=1\geq n(\sqrt [n]{a_1a_2----a_n})=B$
we have :$max(B)$ will occur at $a_1=a_2=----=a_n=\dfrac{1}{n}$
or at $(a_1=1,and \,\, a_2=a_3=--------=a_n=0)$
so $max(A)\leq (1+3+5+----+(2n-1))\times \dfrac{1}{n^2}$
$=\dfrac {2n^2}{2n^2}=1$

Hello, Albert!
I have one question to your solution:
If I let $f(a_1,a_2,...,a_n) = a_1^2+3a_2^2+5a_3^2+...+(2n-1)a_n^2$, does the following implication hold:
$B_{max} \Rightarrow f_{max}$?

The reason, I ask, is, that I have solved the problem by means of the Lagrange multiplier, and it turns out, that in the critical point I find descending (different) $a$-values...: $a_1 > a_2 > ...> a_n$.
 
lfdahl said:
Hello, Albert!
I have one question to your solution:
If I let $f(a_1,a_2,...,a_n) = a_1^2+3a_2^2+5a_3^2+...+(2n-1)a_n^2$, does the following implication hold:
$B_{max} \Rightarrow f_{max}$?

The reason, I ask, is, that I have solved the problem by means of the Lagrange multiplier, and it turns out, that in the critical point I find descending (different) $a$-values...: $a_1 > a_2 > ...> a_n$.
$B_{max} \Rightarrow f_{max}$? yes
but $f_{max} \Rightarrow B_{max}$ no
for $ B_{max}$ occurs at $a_1=a_2=----=a_n=\dfrac {1}{n}$
but $f_{max}$ will occur at many points
just name a few:
$(a_1,a_2,a_3,------a_n)=(1,0,0,-----,0)$
$(a_1,a_2,a_3,------a_n)=(0.5,0.5,0,-----,0)$
$(a_1,a_2,a_3,------a_n)=(\dfrac{1}{3},\dfrac {1}{3},\dfrac {1}{3},-----,0)$
--------
$(a_1,a_2,a_3,------a_n)=(\dfrac{1}{n},\dfrac{1}{n},\dfrac{1}{n},---,\dfrac{1}{n})$
but all those points will have the same values of $f_{max}=1$
It is much more complicated solving the problem by means of the Lagrange multiplier,
how do you think ?
 
Albert said:
$B_{max} \Rightarrow f_{max}$? yes
but $f_{max} \Rightarrow B_{max}$ no
for $ B_{max}$ occurs at $a_1=a_2=----=a_n=\dfrac {1}{n}$
but $f_{max}$ will occur at many points
just name a few:
$(a_1,a_2,a_3,------a_n)=(1,0,0,-----,0)$
$(a_1,a_2,a_3,------a_n)=(0.5,0.5,0,-----,0)$
$(a_1,a_2,a_3,------a_n)=(\dfrac{1}{3},\dfrac {1}{3},\dfrac {1}{3},-----,0)$
--------
$(a_1,a_2,a_3,------a_n)=(\dfrac{1}{n},\dfrac{1}{n},\dfrac{1}{n},---,\dfrac{1}{n})$
but all those points will have the same values of $f_{max}=1$
It is much more complicated solving the problem by means of the Lagrange multiplier,
how do you think ?

I think, you´re right! Thanks a lot for your participation and correct solution!:o
 
lfdahl said:
I think, you´re right! Thanks a lot for your participation and correct solution!:o
you are also right ,the benefit of Lagrange multiplier is :
we can find a solution $a_1>a_2>a_3>------->a_n$
given $a_1+a_2+a_3+-----+a_n=1---(1)$
$a_n=\dfrac {k}{4n-2},k>0$ and will satisfy (1)
in this case $f(max)=a_1^2+3a_2^2+-----+(2n-1)a_n^2<1$
 
Last edited:
Albert said:
you are also right ,the benefit of Lagrange multiplier is :
we can find a solution $a_1>a_2>a_3>------->a_n$
given $a_1+a_2+a_3+-----+a_n=1---(1)$
$a_n=\dfrac {k}{4n-2},k>0$ and will satisfy (1)
in this case $f(max)=a_1^2+3a_2^2+-----+(2n-1)a_n^2<1$

Hello, again, Albert!:D

Below is my solution:

I think your $k$ is the same as the Lagrange multiplier ($\lambda$).

With \[f(a_1,a_2,...,a_n) = \sum_{j=1}^{n}(2j-1)a_j^2,\: \: \: g(a_1,a_2,...,a_n) = \sum_{i=1}^{n}a_i = 1\]
- I get:
\[\nabla f = 2\left ( a_1,3a_2,5a_3,...,(2n-1)a_n \right ), \: \: \: \lambda \nabla g = \lambda \underbrace{(1,1,..,1)}_{n\: \: times}\\\\ \nabla f = \lambda \nabla g \Rightarrow a_j^* = \frac{\lambda}{2} \cdot \frac{1}{2j-1}, \: \: \: j = 1,2,...n\]
Determining $\lambda$ from the constraint:
\[\frac{\lambda}{2} \sum_{j=1}^{n} \frac{1}{2j-1} = 1 \rightarrow \lambda = \frac{2}{\sigma},\: \: \: \sigma = \sum_{j=1}^{n} \frac{1}{2j-1} \geq \frac{n^2}{\sum_{j=1}^{n}(2j-1)} = \frac{n^2}{n^2}=1.\]
The inequality is a consequence of the harmonic-mean geometric-mean arithmetic-mean inequality:
\[\frac{n}{\sum_{i=1}^{n}\frac{1}{x_i}} \leq \left ( \prod_{i=1}^{n}x_i \right )^{1/n} \leq \frac{\sum_{i=1}^{n}x_i}{n}\]
Determining $f$´s value in the critical point:
\[f(a_1^*,a_2^*,...,a_n^*) = \sum_{j=1}^{n}(2j-1)(a_j^*)^2 \\\\ = \sum_{j=1}^{n}(2j-1)\left ( \frac{\lambda }{2} \right )^2 \frac{1}{(2j-1)^2} = \left ( \frac{\lambda }{2} \right )^2 \sigma = \frac{1}{\sigma }.\]
But $\sigma \ge 1$, and we´re done.
 
lfdahl said:
Hello, again, Albert!:D

Below is my solution:

I think your $k$ is the same as the Lagrange multiplier ($\lambda$).

With \[f(a_1,a_2,...,a_n) = \sum_{j=1}^{n}(2j-1)a_j^2,\: \: \: g(a_1,a_2,...,a_n) = \sum_{i=1}^{n}a_i = 1\]
- I get:
\[\nabla f = 2\left ( a_1,3a_2,5a_3,...,(2n-1)a_n \right ), \: \: \: \lambda \nabla g = \lambda \underbrace{(1,1,..,1)}_{n\: \: times}\\\\ \nabla f = \lambda \nabla g \Rightarrow a_j^* = \frac{\lambda}{2} \cdot \frac{1}{2j-1}, \: \: \: j = 1,2,...n\]
Determining $\lambda$ from the constraint:
\[\frac{\lambda}{2} \sum_{j=1}^{n} \frac{1}{2j-1} = 1 \rightarrow \lambda = \frac{2}{\sigma},\: \: \: \sigma = \sum_{j=1}^{n} \frac{1}{2j-1} \geq \frac{n^2}{\sum_{j=1}^{n}(2j-1)} = \frac{n^2}{n^2}=1.\]
The inequality is a consequence of the harmonic-mean geometric-mean arithmetic-mean inequality:
\[\frac{n}{\sum_{i=1}^{n}\frac{1}{x_i}} \leq \left ( \prod_{i=1}^{n}x_i \right )^{1/n} \leq \frac{\sum_{i=1}^{n}x_i}{n}\]
Determining $f$´s value in the critical point:
\[f(a_1^*,a_2^*,...,a_n^*) = \sum_{j=1}^{n}(2j-1)(a_j^*)^2 \\\\ = \sum_{j=1}^{n}(2j-1)\left ( \frac{\lambda }{2} \right )^2 \frac{1}{(2j-1)^2} = \left ( \frac{\lambda }{2} \right )^2 \sigma = \frac{1}{\sigma }.\]
But $\sigma \ge 1$, and we´re done.
take $a_1+a_2=1$ ,for simplicity
using your method we will find
$max(a_1^2+3a_2^2-\lambda(a_1+a_2-1))$
in this case :$a_1=\dfrac{\lambda}{2}$ ,$a_2=\dfrac{\lambda}{6}$
and $\lambda=\dfrac {3}{2}$ (fixed)
so $a_1=\dfrac{3}{4}$,$a_2=\dfrac{1}{4}$
and $a_1^2+3a_2^2=\dfrac{12}{16}=\dfrac {3}{4}<1$
 
Last edited:
I can´t help it to show the short and elegant solution below:
\[1 = \left ( \sum_{i=1}^{n}a_i \right )^2 = \sum_{i=1}^{n}a_i^2+2 \sum_{1\leq i < j \leq n}a_ia_j \geq \sum_{i=1}^{n}a_i^2 + 2\sum_{j=2}^{n}(j-1)a_j^2 = \sum_{i=1}^{n}(2i-1)a_i^2\]
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K