MHB Prove A=B when A⊂span(B) and B⊂span(A)

toni07
Messages
24
Reaction score
0
Let A and B be subsets of a vector space V. Assume that A ⊂ span(B) and that B ⊂ span(A) Prove that A = B.
I don't know how to go about this question, any help would be appreciated.
 
Physics news on Phys.org
crypt50 said:
Let A and B be subsets of a vector space V. Assume that A ⊂ span(B) and that B ⊂ span(A) Prove that A = B.

That is not true. Choose for example $V=\mathbb{R}^2,$ $A=\{(1,0)\}$ and $B=\{(2,0)\}.$
 
crypt50 said:
Let A and B be subsets of a vector space V. Assume that A ⊂ span(B) and that B ⊂ span(A) Prove that A = B.
I don't know how to go about this question, any help would be appreciated.
Quite likely what you were actually after is the following:

If $A\subseteq\text{ span}(B)$ and $B\subseteq\text{ span}(A)$, then $\text{span}(A)=\text{span}(B)$.

Let $\text{span}(A)=U$ and $\text{span}(B)=W$.

Since $A\subseteq W$, we have $\text{span}(A)=U\subseteq W$. This is because $W$ is a subspace of $V$. Similarly $W\subseteq U$. We get $W=U$ and we are done.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
Back
Top