MHB Prove A=B when A⊂span(B) and B⊂span(A)

toni07
Messages
24
Reaction score
0
Let A and B be subsets of a vector space V. Assume that A ⊂ span(B) and that B ⊂ span(A) Prove that A = B.
I don't know how to go about this question, any help would be appreciated.
 
Physics news on Phys.org
crypt50 said:
Let A and B be subsets of a vector space V. Assume that A ⊂ span(B) and that B ⊂ span(A) Prove that A = B.

That is not true. Choose for example $V=\mathbb{R}^2,$ $A=\{(1,0)\}$ and $B=\{(2,0)\}.$
 
crypt50 said:
Let A and B be subsets of a vector space V. Assume that A ⊂ span(B) and that B ⊂ span(A) Prove that A = B.
I don't know how to go about this question, any help would be appreciated.
Quite likely what you were actually after is the following:

If $A\subseteq\text{ span}(B)$ and $B\subseteq\text{ span}(A)$, then $\text{span}(A)=\text{span}(B)$.

Let $\text{span}(A)=U$ and $\text{span}(B)=W$.

Since $A\subseteq W$, we have $\text{span}(A)=U\subseteq W$. This is because $W$ is a subspace of $V$. Similarly $W\subseteq U$. We get $W=U$ and we are done.
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
Replies
10
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 25 ·
Replies
25
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
3
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 23 ·
Replies
23
Views
1K