Prove: A(BC)=(AB)C for matrix multiplication

adartsesirhc
Messages
54
Reaction score
0

Homework Statement


Prove the following theorem:
A(BC)=(AB)C.


Homework Equations


http://en.wikipedia.org/wiki/Matrix_multiplication#Ordinary_matrix_product"


The Attempt at a Solution


Let A be of order m by n, B be of order n by p, and C be of order p by q. Then
(A(BC))_{ij}=\sum^{n}_{k=1} A_{ik}(BC)_{kj}=\sum^{n}_{k=1} (A_{ik}(\sum^{p}_{r=1} B_{kr}C_{rj}))
After this, I'm stuck. How do I put the summations together, and how should I change the indices of summation?

Thanks!
 
Last edited by a moderator:
Physics news on Phys.org
adartsesirhc said:
Let A be of order m by n, B be of order n by p, and C be of order p by q. Then
(A(BC))_{ij}=\sum^{n}_{k=1} A_{ik}(BC)_{kj}=\sum^{n}_{k=1} (A_{ik}(\sum^{p}_{r=1} B_{kr}C_{rj}))
After this, I'm stuck. How do I put the summations together, and how should I change the indices of summation?

Hi adartsesirhc! :smile:

(nice LaTeX, btw!)

Hint: You can move the ∑s as far to the left as you like. :smile:
 
(A(BC))_{ij}=\sum^{n}_{k=1} A_{ik}(BC)_{kj}=\sum^{n}_{k=1} (A_{ik}(\sum^{p}_{r=1} B_{kr}C_{rj}))=\sum^{n}_{k=1} \sum^{p}_{r=1} A_{ik}B_{kr}C_{rj}=\sum^{p}_{r=1} (\sum^{n}_{k=1} A_{ik}B_{kr})C_{rj}=\sum^{p}_{r=1} (AB)_{ir}C_{rj}=((AB)C)_{ij}.

How's that?
 
adartsesirhc said:
(A(BC))_{ij}=\sum^{n}_{k=1} A_{ik}(BC)_{kj}=\sum^{n}_{k=1} (A_{ik}(\sum^{p}_{r=1} B_{kr}C_{rj}))=\sum^{n}_{k=1} \sum^{p}_{r=1} A_{ik}B_{kr}C_{rj}=\sum^{p}_{r=1} (\sum^{n}_{k=1} A_{ik}B_{kr})C_{rj}=\sum^{p}_{r=1} (AB)_{ir}C_{rj}=((AB)C)_{ij}.

How's that?

Perfect! :smile:
:biggrin: Woohoo! :biggrin:
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
Replies
5
Views
3K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
12K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K