- #1
Mr Davis 97
- 1,462
- 44
Homework Statement
Prove that the upper triangular matrices form a subspace of ##\mathbb{M}_{m \times n}## over a field ##\mathbb{F}##
Homework Equations
The Attempt at a Solution
We can prove this entrywise.
1) Obviously the zero matrix is an upper triangular matrix, because it satisfies the property that whenever ##i > j##, ##A_{ij} = 0##.
2) There are two cases; when ##i \le j## and when ##i > j##.
When ##i \le j## we have that ##(A + B)_{ij} = A_{ij} + B_{ij}##. When ##i > j## we have that ##(A + B)_{ij} = A_{ij} + B_{ij} = 0 + 0 = 0##. Therefore, ##A + B## is still an upper triangular matrix.
3) When ##i \le j## we have that ##(cA)_{ij} = c(A_{ij})##. When ##i > j##, we have that ##(cA)_{ij} = c(A_{ij}) = c(0) = 0##. Therefore, ##cA## is still an upper triangular matrix.
Is this argument enough to show that the upper triangular matrices form a subspace of mxn matrices over a field F?