MHB Prove an expression is rational

Click For Summary
The discussion focuses on proving that the expression $\sqrt{(c−3)(c+1)}$ is rational under the condition that $a, b, c$ are rational numbers with non-zero sums $a+bc$, $b+ac$, and $a+b$. The proof begins by manipulating the given equality $\dfrac{1}{a+bc} = \dfrac{1}{a+b} - \dfrac{1}{b+ac}$ to derive a relationship between $a$, $b$, and $c$. It shows that $ab = \left(\dfrac{a+b}{c-1}\right)^2$, leading to $\sqrt{ab} = \left|\dfrac{a+b}{c-1}\right|$, which is rational. Finally, it concludes that $(c-3)(c+1)$ can be expressed as $\dfrac{(a-b)^2}{ab}$, confirming that $\sqrt{(c-3)(c+1)}$ is indeed rational.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
The rational numbers $a,\,b,\,c$ (for which $a+bc$, $b+ac$ and $a+b$ are all non-zero) satisfy the equality $\dfrac{1}{a+bc} =\dfrac{1}{a+b}-\dfrac{1}{b+ac}$.

Prove that $\sqrt{(c−3)(c+1)}$ is rational.
 
Mathematics news on Phys.org
anemone said:
The rational numbers $a,\,b,\,c$ (for which $a+bc$, $b+ac$ and $a+b$ are all non-zero) satisfy the equality $\dfrac{1}{a+bc} =\dfrac{1}{a+b}-\dfrac{1}{b+ac}$.

Prove that $\sqrt{(c−3)(c+1)}$ is rational.
[sp]Write it as $\dfrac{1}{a+b} = \dfrac{1}{a+bc} + \dfrac{1}{b+ac} = \dfrac{(a+b)(1+c)}{(a+bc)(b+ac)}$. Then $$(a+b)^2(1+c) = (a+bc)(b+ac) = ab(1+c^2) + (a^2+b^2)c,$$ $$(a+b)^2 + 2abc = ab(1+c^2),$$ $$(a+b)^2 = ab(c-1)^2.$$ This shows that $ab = \Bigl(\dfrac{a+b}{c-1}\Bigr)^2$. In other words, $\sqrt{ab} = \Bigl|\dfrac{a+b}{c-1}\Bigr|,$ which is rational.

Also, $c-1 = \dfrac{\pm(a+b)}{\sqrt{ab}}$, so that $c-3 = \dfrac{\pm(a+b)}{\sqrt{ab}} - 2 = \dfrac{\pm(a+b) - 2\sqrt{ab}}{\sqrt{ab}}$, and $c+1 = \dfrac{\pm(a+b)}{\sqrt{ab}} + 2 = \dfrac{\pm(a+b) + 2\sqrt{ab}}{\sqrt{ab}}.$

Therefore $(c-3)(c+1) = \dfrac{(a+b)^2 - 4ab}{ab} = \dfrac{(a-b)^2}{ab}$, from which $\sqrt{(c-3)(c+1)} = \dfrac{|\,a-b\,|}{\sqrt{ab}}$, which is rational.[/sp]
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K