Prove Angle of Diagonals in Quadrilateral is Degrees

  • Context: MHB 
  • Thread starter Thread starter maxkor
  • Start date Start date
  • Tags Tags
    Angle
Click For Summary

Discussion Overview

The discussion revolves around proving the angle at which the diagonals of a quadrilateral intersect, specifically in the context of a square with certain geometric constraints. The scope includes both algebraic and geometric approaches to the problem.

Discussion Character

  • Exploratory, Technical explanation, Debate/contested, Mathematical reasoning

Main Points Raised

  • One participant presents a problem involving a square and a strip, asking for a proof regarding the angle of intersection of the diagonals of a quadrilateral formed by specific intersection points.
  • Another participant offers an algebraic solution but expresses a desire for a geometric solution to provide deeper insight into the result.
  • A hint is provided, suggesting a relationship involving angles α and β, leading to a conclusion about the angles in the triangles formed by the intersection points.
  • Further mathematical reasoning is presented, indicating that certain triangles are isosceles and providing specific angle measures based on the relationships between α, β, and γ.

Areas of Agreement / Disagreement

Participants do not appear to reach a consensus on the preferred method of proof, with some favoring algebraic solutions and others seeking geometric insights. The discussion remains unresolved regarding the most effective approach to the problem.

Contextual Notes

The discussion includes assumptions about the properties of the triangles involved and the relationships between the angles, which may depend on specific definitions or configurations not fully detailed in the posts.

Who May Find This Useful

Readers interested in geometric proofs, angle relationships in quadrilaterals, and those exploring different methods of problem-solving in mathematics may find this discussion relevant.

maxkor
Messages
79
Reaction score
0
Two angles of a square with side
c7d457e388298246adb06c587bccd419ea67f7e8.png
protrude beyond a strip of width
c7d457e388298246adb06c587bccd419ea67f7e8.png
with parallel edges. The sides of the square intersect the edges of the strip at four points. Prove that the diagonals of the quadrilateral whose vertices are these points intersect at an angle of
f27da4fca6f3fecb215974023aad210b70ec3857.png
degrees.
rys.png
 

Attachments

  • rys.png
    rys.png
    1.2 KB · Views: 241
Mathematics news on Phys.org
As in a previous problem, here is an algebraic solution. I would like to see a geometric solution giving more insight into why this result holds.
We may as well take $a=1$. Tilt the diagram so that the square becomes the unit square, and suppose that the parallel lines make an angle $\theta$ with the $x$-axis.

[TIKZ][scale=1.25]
\draw [very thick] (0,0) -- (4,0) -- (4,4) -- (0,4) -- cycle ;
\draw [very thick] (-4,0.5) -- (4,6.5) ;
\draw [very thick] (0,-1.5) -- (8,4.5) ;
\coordinate [label=left:$A$] (A) at (0,3.5) ;
\coordinate [label=above:$B$] (B) at (0.667,4) ;
\coordinate [label=right:$C$] (C) at (4,1.5) ;
\coordinate [label=below:$D$] (D) at (2,0) ;
\draw [very thick] (A) -- (C) ;
\draw [very thick] (B) -- (D) ;
\draw (2.5,0.2) node {$\theta$} ;
\draw (1.3,2.6) node {$\phi$} ;
\draw (-0.5,0) node {$(0,0)$} ;
\draw (4.5,0) node {$(1,0)$} ;
\draw (-0.5,4) node {$(0,1)$} ;
\draw (4.5,4) node {$(1,1)$} ; [/TIKZ]
The equations of the parallel lines are then of the form $y = x\tan\theta + c+d$ and $y = x\tan\theta + c-d$ for some constants $c$ and $d$. The condition that the lines form a strip of width $1$ is $2d\cos\theta = 1$. So $2d = \sec\theta$.

The points where the lines cross the sides of the square are then $$ A = (0,c+d),\qquad B = ((1-c-d)\cot\theta,1), \qquad C = (1,\tan\theta + c-d), \qquad D = ((d-c)\cot\theta,0) .$$ The slope of the line $AC$ is therefore $\tan\theta - 2d = \tan\theta - \sec\theta$.

The slope of $BD$ is $\dfrac{-1}{(2d-1)\cot\theta} = \dfrac{-\tan\theta}{\sec\theta-1}$.

It follows from the formula $\tan(\alpha - \beta) = \frac{\tan\alpha -\tan\beta}{1+ \tan\alpha\tan\beta}$ that if $\phi$ is the angle between $AC$ and $BD$ then $$\begin{aligned} \tan\phi = \frac{(\tan\theta - \sec\theta) - \frac{-\tan\theta}{\sec\theta-1}}{1 + (\tan\theta - \sec\theta) \frac{-\tan\theta}{\sec\theta-1}} &= \frac{(\sec\theta - 1)(\tan\theta - \sec\theta) + \tan\theta}{(\sec\theta - 1) - \tan\theta (\tan\theta - \sec\theta)} \\ &= \frac{\sec\theta(\tan\theta - \sec\theta + 1)}{\sec\theta(1 - \sec\theta + \tan\theta)} \\ &= 1. \end{aligned}$$ It follows that $\phi = 45^\circ$.
 
Hint
156973.png

156973.png
 
1 / α + β = 90
2 / it is enough to note that the triangles
KNP and MLQ (they have two heights of length "a") so they are isosceles
so |∡NMQ| =90 - α/2 and |∡MNP| =90 - β/2
γ=(α + β)/2=45
 

Similar threads

Replies
3
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 9 ·
Replies
9
Views
4K