We may as well take $a=1$. Tilt the diagram so that the square becomes the unit square, and suppose that the parallel lines make an angle $\theta$ with the $x$-axis.
[TIKZ][scale=1.25]
\draw [very thick] (0,0) -- (4,0) -- (4,4) -- (0,4) -- cycle ;
\draw [very thick] (-4,0.5) -- (4,6.5) ;
\draw [very thick] (0,-1.5) -- (8,4.5) ;
\coordinate [label=left:$A$] (A) at (0,3.5) ;
\coordinate [label=above:$B$] (B) at (0.667,4) ;
\coordinate [label=right:$C$] (C) at (4,1.5) ;
\coordinate [label=below:$D$] (D) at (2,0) ;
\draw [very thick] (A) -- (C) ;
\draw [very thick] (B) -- (D) ;
\draw (2.5,0.2) node {$\theta$} ;
\draw (1.3,2.6) node {$\phi$} ;
\draw (-0.5,0) node {$(0,0)$} ;
\draw (4.5,0) node {$(1,0)$} ;
\draw (-0.5,4) node {$(0,1)$} ;
\draw (4.5,4) node {$(1,1)$} ; [/TIKZ]
The equations of the parallel lines are then of the form $y = x\tan\theta + c+d$ and $y = x\tan\theta + c-d$ for some constants $c$ and $d$. The condition that the lines form a strip of width $1$ is $2d\cos\theta = 1$. So $2d = \sec\theta$.
The points where the lines cross the sides of the square are then $$ A = (0,c+d),\qquad B = ((1-c-d)\cot\theta,1), \qquad C = (1,\tan\theta + c-d), \qquad D = ((d-c)\cot\theta,0) .$$ The slope of the line $AC$ is therefore $\tan\theta - 2d = \tan\theta - \sec\theta$.
The slope of $BD$ is $\dfrac{-1}{(2d-1)\cot\theta} = \dfrac{-\tan\theta}{\sec\theta-1}$.
It follows from the formula $\tan(\alpha - \beta) = \frac{\tan\alpha -\tan\beta}{1+ \tan\alpha\tan\beta}$ that if $\phi$ is the angle between $AC$ and $BD$ then $$\begin{aligned} \tan\phi = \frac{(\tan\theta - \sec\theta) - \frac{-\tan\theta}{\sec\theta-1}}{1 + (\tan\theta - \sec\theta) \frac{-\tan\theta}{\sec\theta-1}} &= \frac{(\sec\theta - 1)(\tan\theta - \sec\theta) + \tan\theta}{(\sec\theta - 1) - \tan\theta (\tan\theta - \sec\theta)} \\ &= \frac{\sec\theta(\tan\theta - \sec\theta + 1)}{\sec\theta(1 - \sec\theta + \tan\theta)} \\ &= 1. \end{aligned}$$ It follows that $\phi = 45^\circ$.