Prove \cos Formulas: \frac{\pi}{7}, \frac{2\pi}{7}, \frac{3\pi}{7} & General Sum

  • Thread starter Thread starter Jameson
  • Start date Start date
Click For Summary
SUMMARY

The discussion centers on proving the identity \(\cos\left(\frac{\pi}{7}\right) - \cos\left(\frac{2\pi}{7}\right) + \cos\left(\frac{3\pi}{7}\right) = \frac{1}{2}\). The solution provided by anemone demonstrates this by manipulating trigonometric identities and applying the sine function. Additionally, MarkFL confirms that the general sum \(\sum_{i=1}^{n}\cos\left(\frac{(2i-1)\pi}{2n+1}\right) = \frac{1}{2}\) using properties of sine and cosine functions.

PREREQUISITES
  • Understanding of trigonometric identities, particularly sine and cosine functions.
  • Familiarity with the unit circle and angle measures in radians.
  • Knowledge of summation notation and series.
  • Ability to manipulate algebraic expressions involving trigonometric functions.
NEXT STEPS
  • Study advanced trigonometric identities and their proofs.
  • Explore the properties of sine and cosine functions in relation to periodicity and symmetry.
  • Learn about telescoping series and their applications in mathematical proofs.
  • Investigate other specific angle cosine identities, such as \(\cos\left(\frac{\pi}{n}\right)\) for various \(n\).
USEFUL FOR

Mathematicians, students studying trigonometry, and educators looking for examples of trigonometric identities and their proofs.

Jameson
Insights Author
Gold Member
MHB
Messages
4,533
Reaction score
13
Show that [math]\cos \left( \frac{\pi}{7} \right)-\cos \left( \frac{2\pi}{7} \right)+\cos \left( \frac{3\pi}{7} \right)=\frac{1}{2}[/math]

Bonus: [sp]Show that the general form of [math]\sum_{i=1}^{n}\cos \left( \frac{(2i-1)\pi}{2n+1} \right)[/math] is always one-half.[/sp]
--------------------
 
Last edited:
Physics news on Phys.org
Congratulations to the following members for their correct solutions:

1) MarkFL
2) anemone

Solution (from anemone): [sp]Let $\displaystyle P=\cos\frac{\pi}{7}-\cos\frac{2\pi}{7}+\cos\frac{3\pi}{7}$

Multiply the left and right side of the equation above by $\displaystyle 2\sin\frac{\pi}{7}$, we get:

$\displaystyle \left(2\sin\frac{\pi}{7}\right)P=2\sin\frac{\pi}{7}\cos\frac{ \pi }{7}-2\sin\frac{\pi}{7}\cos\frac{2\pi}{7}+2\sin\frac{ \pi}{7}\cos\frac{3\pi}{7}$

$\displaystyle \left(2\sin\frac{\pi}{7}\right)P=\sin\frac{2 \pi}{7}-\left(\sin\frac{3\pi}{7}-\sin\frac{\pi}{7}\right)+\left(\sin\frac{4\pi}{7}-\sin\frac{2\pi}{7}\right)$

$\displaystyle \left(2\sin\frac{\pi}{7}\right)P=\sin\frac{4\pi}{7}-\sin\frac{3\pi}{7}-\sin\frac{\pi}{7}$

$\displaystyle \left(2\sin\frac{\pi}{7}\right)P=\sin\left(\pi-\frac{3\pi}{7}\right)-\sin\frac{3\pi}{7}+\sin\frac{\pi}{7}$

$\displaystyle \left(2\sin\frac{\pi}{7}\right)P=\sin\frac{3\pi}{7}-\sin\frac{3\pi}{7}+\sin\frac{\pi}{7}$

$\displaystyle \left(2\sin\frac{\pi}{7}\right)P=\sin\frac{\pi}{7}$

$\displaystyle P=\frac{1}{2}$, i.e.

$\displaystyle \cos\frac{\pi}{7}-\cos\frac{2\pi}{7}+\cos\frac{3\pi}{7}=\frac{1}{2}$[/sp]

Bonus (from MarkFL): [sp]$\displaystyle \sum_{i=1}^{n}\cos \left( \frac{(2i-1)\pi}{2n+1} \right)=\frac{1}{2}$

Using the identity $\cos(\pi-\theta)=-\cos(\theta)$, the left side becomes:

$\displaystyle -\sum_{i=1}^{n}\cos \left( \frac{2(n+1-i)\pi}{2n+1} \right)$

Multiplying by $\displaystyle 1=\frac{2\sin\left(\frac{2\pi}{2n+1} \right)}{2\sin\left(\frac{2\pi}{2n+1} \right)}$ we obtain:

$\displaystyle -\frac{1}{2\sin\left(\frac{2\pi}{2n+1} \right)}\sum_{i=1}^{n}2\sin\left(\frac{2\pi}{2n+1} \right)\cos \left( \frac{2(n+1-i)\pi}{2n+1} \right)$

Using the identities $2\sin(\alpha)\cos(\beta)=\sin(\alpha+\beta)+\sin(\alpha-\beta)$ and $sin(-\theta)=-\sin(\theta)$ the sum becomes:

$\displaystyle -\frac{1}{2\sin\left(\frac{2\pi}{2n+1} \right)}\sum_{i=1}^{n}\left[\sin\left(\frac{2\pi(n+2-i)}{2n+1} \right)-\sin\left(\frac{2\pi(n-i)}{2n+1} \right) \right]$

Discarding all the terms that add to zero in the telescoping series, we are left with:

$\displaystyle -\frac{\sin\left(\frac{2\pi(n+1)}{2n+1} \right)+\sin\left(\frac{2\pi n}{2n+1} \right)-\sin\left(\frac{2\pi}{2n+1} \right)}{2\sin\left(\frac{2\pi}{2n+1} \right)}$

Using the identity $\sin(\pi-\theta)=\sin(\theta)$ on the first two terms in the numerator, we have:

$\displaystyle -\frac{\sin\left(-\frac{\pi}{2n+1} \right)+\sin\left(\frac{\pi}{2n+1} \right)-\sin\left(\frac{2\pi}{2n+1} \right)}{2\sin\left(\frac{2\pi}{2n+1} \right)}$

Using the identity $\sin(-\theta)=-\sin(\theta)$ on the first term in the numerator this becomes:

$\displaystyle -\frac{-\sin\left(\frac{\pi}{2n+1} \right)+\sin\left(\frac{\pi}{2n+1} \right)-\sin\left(\frac{2\pi}{2n+1} \right)}{2\sin\left(\frac{2\pi}{2n+1} \right)}$

Collect like terms and distribute negative sign:

$\displaystyle \frac{\sin\left(\frac{2\pi}{2n+1} \right)}{2\sin\left(\frac{2\pi}{2n+1} \right)}$

Reduce:

$\displaystyle \frac{1}{2}$[/sp]
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
3
Views
2K