MHB Prove \cos Formulas: \frac{\pi}{7}, \frac{2\pi}{7}, \frac{3\pi}{7} & General Sum

  • Thread starter Thread starter Jameson
  • Start date Start date
AI Thread Summary
The discussion centers on proving the identity \(\cos \left( \frac{\pi}{7} \right)-\cos \left( \frac{2\pi}{7} \right)+\cos \left( \frac{3\pi}{7} \right)=\frac{1}{2}\). The solution involves manipulating the equation using trigonometric identities, ultimately showing that the left-hand side simplifies to \(\frac{1}{2}\). Additionally, a bonus proof demonstrates that the general sum \(\sum_{i=1}^{n}\cos \left( \frac{(2i-1)\pi}{2n+1} \right)\) also equals \(\frac{1}{2}\). Both proofs highlight the application of sine and cosine identities to derive the results. The thread concludes with acknowledgments to members who provided correct solutions.
Jameson
Insights Author
Gold Member
MHB
Messages
4,533
Reaction score
13
Show that [math]\cos \left( \frac{\pi}{7} \right)-\cos \left( \frac{2\pi}{7} \right)+\cos \left( \frac{3\pi}{7} \right)=\frac{1}{2}[/math]

Bonus: [sp]Show that the general form of [math]\sum_{i=1}^{n}\cos \left( \frac{(2i-1)\pi}{2n+1} \right)[/math] is always one-half.[/sp]
--------------------
 
Last edited:
Physics news on Phys.org
Congratulations to the following members for their correct solutions:

1) MarkFL
2) anemone

Solution (from anemone): [sp]Let $\displaystyle P=\cos\frac{\pi}{7}-\cos\frac{2\pi}{7}+\cos\frac{3\pi}{7}$

Multiply the left and right side of the equation above by $\displaystyle 2\sin\frac{\pi}{7}$, we get:

$\displaystyle \left(2\sin\frac{\pi}{7}\right)P=2\sin\frac{\pi}{7}\cos\frac{ \pi }{7}-2\sin\frac{\pi}{7}\cos\frac{2\pi}{7}+2\sin\frac{ \pi}{7}\cos\frac{3\pi}{7}$

$\displaystyle \left(2\sin\frac{\pi}{7}\right)P=\sin\frac{2 \pi}{7}-\left(\sin\frac{3\pi}{7}-\sin\frac{\pi}{7}\right)+\left(\sin\frac{4\pi}{7}-\sin\frac{2\pi}{7}\right)$

$\displaystyle \left(2\sin\frac{\pi}{7}\right)P=\sin\frac{4\pi}{7}-\sin\frac{3\pi}{7}-\sin\frac{\pi}{7}$

$\displaystyle \left(2\sin\frac{\pi}{7}\right)P=\sin\left(\pi-\frac{3\pi}{7}\right)-\sin\frac{3\pi}{7}+\sin\frac{\pi}{7}$

$\displaystyle \left(2\sin\frac{\pi}{7}\right)P=\sin\frac{3\pi}{7}-\sin\frac{3\pi}{7}+\sin\frac{\pi}{7}$

$\displaystyle \left(2\sin\frac{\pi}{7}\right)P=\sin\frac{\pi}{7}$

$\displaystyle P=\frac{1}{2}$, i.e.

$\displaystyle \cos\frac{\pi}{7}-\cos\frac{2\pi}{7}+\cos\frac{3\pi}{7}=\frac{1}{2}$[/sp]

Bonus (from MarkFL): [sp]$\displaystyle \sum_{i=1}^{n}\cos \left( \frac{(2i-1)\pi}{2n+1} \right)=\frac{1}{2}$

Using the identity $\cos(\pi-\theta)=-\cos(\theta)$, the left side becomes:

$\displaystyle -\sum_{i=1}^{n}\cos \left( \frac{2(n+1-i)\pi}{2n+1} \right)$

Multiplying by $\displaystyle 1=\frac{2\sin\left(\frac{2\pi}{2n+1} \right)}{2\sin\left(\frac{2\pi}{2n+1} \right)}$ we obtain:

$\displaystyle -\frac{1}{2\sin\left(\frac{2\pi}{2n+1} \right)}\sum_{i=1}^{n}2\sin\left(\frac{2\pi}{2n+1} \right)\cos \left( \frac{2(n+1-i)\pi}{2n+1} \right)$

Using the identities $2\sin(\alpha)\cos(\beta)=\sin(\alpha+\beta)+\sin(\alpha-\beta)$ and $sin(-\theta)=-\sin(\theta)$ the sum becomes:

$\displaystyle -\frac{1}{2\sin\left(\frac{2\pi}{2n+1} \right)}\sum_{i=1}^{n}\left[\sin\left(\frac{2\pi(n+2-i)}{2n+1} \right)-\sin\left(\frac{2\pi(n-i)}{2n+1} \right) \right]$

Discarding all the terms that add to zero in the telescoping series, we are left with:

$\displaystyle -\frac{\sin\left(\frac{2\pi(n+1)}{2n+1} \right)+\sin\left(\frac{2\pi n}{2n+1} \right)-\sin\left(\frac{2\pi}{2n+1} \right)}{2\sin\left(\frac{2\pi}{2n+1} \right)}$

Using the identity $\sin(\pi-\theta)=\sin(\theta)$ on the first two terms in the numerator, we have:

$\displaystyle -\frac{\sin\left(-\frac{\pi}{2n+1} \right)+\sin\left(\frac{\pi}{2n+1} \right)-\sin\left(\frac{2\pi}{2n+1} \right)}{2\sin\left(\frac{2\pi}{2n+1} \right)}$

Using the identity $\sin(-\theta)=-\sin(\theta)$ on the first term in the numerator this becomes:

$\displaystyle -\frac{-\sin\left(\frac{\pi}{2n+1} \right)+\sin\left(\frac{\pi}{2n+1} \right)-\sin\left(\frac{2\pi}{2n+1} \right)}{2\sin\left(\frac{2\pi}{2n+1} \right)}$

Collect like terms and distribute negative sign:

$\displaystyle \frac{\sin\left(\frac{2\pi}{2n+1} \right)}{2\sin\left(\frac{2\pi}{2n+1} \right)}$

Reduce:

$\displaystyle \frac{1}{2}$[/sp]
 
Back
Top