MHB Prove Identity: $b_1x^3=b_2y^3=b_3z^3$ & $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1$

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Identity
AI Thread Summary
The discussion centers on proving the identity involving the equations $b_1x^3 = b_2y^3 = b_3z^3$ and $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 1$. Participants are tasked with demonstrating that $\sqrt[3]{b_1x^2 + b_2y^2 + b_3z^2} = \sqrt[3]{b_1} + \sqrt[3]{b_2} + \sqrt[3]{b_3}$. The conversation includes attempts to manipulate the given equations to arrive at the desired result. The proof requires a solid understanding of algebraic manipulation and properties of cube roots. Overall, the focus is on establishing the validity of the proposed identity through mathematical reasoning.
Albert1
Messages
1,221
Reaction score
0
(1):
$b_1x^3=b_2y^3=b_3z^3$
(2):
$\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=1$
prove:
$\sqrt[3]{b_1x^2+b_2y^2+b_3z^2}=\sqrt[3] {b_1}+\sqrt[3] {b_2} + \sqrt[3] {b_3}$
 
Last edited:
Mathematics news on Phys.org
Re: prove the indentity

Albert said:
(1):
$b_1x^3=b_2y^3=b_3z^3$
(2):
$\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=1$
prove:
$\sqrt[3]{b_1x^2+b_2y^2+b_3z^2}=\sqrt[3] {b_1}+\sqrt[3] {b_2} + \sqrt[3] {b_3}$

Hello.

\sqrt[3]{b_1x^2+b_2y^2+b_3z^2}=

=\sqrt[3]{\frac{b_1x^3}{x}+\frac{b_2y^3}{y}+\frac{b_3z^3}{z}}=

=\sqrt[3]{\frac{b_2y^3}{x}+\frac{b_2y^3}{y}+\frac{b_2y^3}{z}}=

=y \sqrt[3]{b_2} \sqrt[3]{\frac{1}{x}+\frac{1}{y}+\frac{1}{z}}= y \sqrt[3]{b_2} (*)

\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}= \dfrac{\sqrt[3]{b_1}}{y \sqrt[3]{b_2}}+\dfrac{\sqrt[3]{b_2}}{y \sqrt[3]{b_2}}+\dfrac{\sqrt[3]{b_3}}{y \sqrt[3]{b_2}}=1 \rightarrow{}

\rightarrow{} \sqrt[3]{b_1}+\sqrt[3]{b_2}+\sqrt[3]{b_3}=y \sqrt[3]{b_2} (**)

For (*) and (**):

\sqrt[3]{b_1x^2+b_2y^2+b_3z^2}=\sqrt[3] {b_1}+\sqrt[3] {b_2} + \sqrt[3] {b_3}

Regards.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top