MHB Prove Identity: $b_1x^3=b_2y^3=b_3z^3$ & $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1$

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Identity
Click For Summary
The discussion centers on proving the identity involving the equations $b_1x^3 = b_2y^3 = b_3z^3$ and $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 1$. Participants are tasked with demonstrating that $\sqrt[3]{b_1x^2 + b_2y^2 + b_3z^2} = \sqrt[3]{b_1} + \sqrt[3]{b_2} + \sqrt[3]{b_3}$. The conversation includes attempts to manipulate the given equations to arrive at the desired result. The proof requires a solid understanding of algebraic manipulation and properties of cube roots. Overall, the focus is on establishing the validity of the proposed identity through mathematical reasoning.
Albert1
Messages
1,221
Reaction score
0
(1):
$b_1x^3=b_2y^3=b_3z^3$
(2):
$\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=1$
prove:
$\sqrt[3]{b_1x^2+b_2y^2+b_3z^2}=\sqrt[3] {b_1}+\sqrt[3] {b_2} + \sqrt[3] {b_3}$
 
Last edited:
Mathematics news on Phys.org
Re: prove the indentity

Albert said:
(1):
$b_1x^3=b_2y^3=b_3z^3$
(2):
$\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=1$
prove:
$\sqrt[3]{b_1x^2+b_2y^2+b_3z^2}=\sqrt[3] {b_1}+\sqrt[3] {b_2} + \sqrt[3] {b_3}$

Hello.

\sqrt[3]{b_1x^2+b_2y^2+b_3z^2}=

=\sqrt[3]{\frac{b_1x^3}{x}+\frac{b_2y^3}{y}+\frac{b_3z^3}{z}}=

=\sqrt[3]{\frac{b_2y^3}{x}+\frac{b_2y^3}{y}+\frac{b_2y^3}{z}}=

=y \sqrt[3]{b_2} \sqrt[3]{\frac{1}{x}+\frac{1}{y}+\frac{1}{z}}= y \sqrt[3]{b_2} (*)

\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}= \dfrac{\sqrt[3]{b_1}}{y \sqrt[3]{b_2}}+\dfrac{\sqrt[3]{b_2}}{y \sqrt[3]{b_2}}+\dfrac{\sqrt[3]{b_3}}{y \sqrt[3]{b_2}}=1 \rightarrow{}

\rightarrow{} \sqrt[3]{b_1}+\sqrt[3]{b_2}+\sqrt[3]{b_3}=y \sqrt[3]{b_2} (**)

For (*) and (**):

\sqrt[3]{b_1x^2+b_2y^2+b_3z^2}=\sqrt[3] {b_1}+\sqrt[3] {b_2} + \sqrt[3] {b_3}

Regards.
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

Replies
1
Views
1K
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
16
Views
838
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K