MHB Prove Identity: $b_1x^3=b_2y^3=b_3z^3$ & $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1$

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Identity
Click For Summary
The discussion centers on proving the identity involving the equations $b_1x^3 = b_2y^3 = b_3z^3$ and $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 1$. Participants are tasked with demonstrating that $\sqrt[3]{b_1x^2 + b_2y^2 + b_3z^2} = \sqrt[3]{b_1} + \sqrt[3]{b_2} + \sqrt[3]{b_3}$. The conversation includes attempts to manipulate the given equations to arrive at the desired result. The proof requires a solid understanding of algebraic manipulation and properties of cube roots. Overall, the focus is on establishing the validity of the proposed identity through mathematical reasoning.
Albert1
Messages
1,221
Reaction score
0
(1):
$b_1x^3=b_2y^3=b_3z^3$
(2):
$\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=1$
prove:
$\sqrt[3]{b_1x^2+b_2y^2+b_3z^2}=\sqrt[3] {b_1}+\sqrt[3] {b_2} + \sqrt[3] {b_3}$
 
Last edited:
Mathematics news on Phys.org
Re: prove the indentity

Albert said:
(1):
$b_1x^3=b_2y^3=b_3z^3$
(2):
$\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=1$
prove:
$\sqrt[3]{b_1x^2+b_2y^2+b_3z^2}=\sqrt[3] {b_1}+\sqrt[3] {b_2} + \sqrt[3] {b_3}$

Hello.

\sqrt[3]{b_1x^2+b_2y^2+b_3z^2}=

=\sqrt[3]{\frac{b_1x^3}{x}+\frac{b_2y^3}{y}+\frac{b_3z^3}{z}}=

=\sqrt[3]{\frac{b_2y^3}{x}+\frac{b_2y^3}{y}+\frac{b_2y^3}{z}}=

=y \sqrt[3]{b_2} \sqrt[3]{\frac{1}{x}+\frac{1}{y}+\frac{1}{z}}= y \sqrt[3]{b_2} (*)

\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}= \dfrac{\sqrt[3]{b_1}}{y \sqrt[3]{b_2}}+\dfrac{\sqrt[3]{b_2}}{y \sqrt[3]{b_2}}+\dfrac{\sqrt[3]{b_3}}{y \sqrt[3]{b_2}}=1 \rightarrow{}

\rightarrow{} \sqrt[3]{b_1}+\sqrt[3]{b_2}+\sqrt[3]{b_3}=y \sqrt[3]{b_2} (**)

For (*) and (**):

\sqrt[3]{b_1x^2+b_2y^2+b_3z^2}=\sqrt[3] {b_1}+\sqrt[3] {b_2} + \sqrt[3] {b_3}

Regards.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

Replies
1
Views
1K
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 16 ·
Replies
16
Views
1K
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K