Prove Identity: $b_1x^3=b_2y^3=b_3z^3$ & $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1$

  • Context: MHB 
  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Identity
Click For Summary
SUMMARY

The discussion focuses on proving the identity $\sqrt[3]{b_1x^2+b_2y^2+b_3z^2}=\sqrt[3]{b_1}+\sqrt[3]{b_2}+\sqrt[3]{b_3}$ under the conditions $b_1x^3=b_2y^3=b_3z^3$ and $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1$. Participants emphasize the importance of these equations in establishing the relationship between the variables and constants involved. The proof hinges on manipulating the given equations to derive the desired equality definitively.

PREREQUISITES
  • Understanding of algebraic identities and manipulations
  • Familiarity with cubic roots and their properties
  • Knowledge of rational equations and their solutions
  • Basic skills in mathematical proof techniques
NEXT STEPS
  • Study algebraic manipulation techniques for cubic equations
  • Explore properties of symmetric functions in algebra
  • Investigate advanced proof strategies in algebraic identities
  • Learn about the applications of rational equations in mathematical modeling
USEFUL FOR

Mathematicians, students studying algebra, and anyone interested in advanced algebraic identities and proofs.

Albert1
Messages
1,221
Reaction score
0
(1):
$b_1x^3=b_2y^3=b_3z^3$
(2):
$\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=1$
prove:
$\sqrt[3]{b_1x^2+b_2y^2+b_3z^2}=\sqrt[3] {b_1}+\sqrt[3] {b_2} + \sqrt[3] {b_3}$
 
Last edited:
Mathematics news on Phys.org
Re: prove the indentity

Albert said:
(1):
$b_1x^3=b_2y^3=b_3z^3$
(2):
$\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=1$
prove:
$\sqrt[3]{b_1x^2+b_2y^2+b_3z^2}=\sqrt[3] {b_1}+\sqrt[3] {b_2} + \sqrt[3] {b_3}$

Hello.

\sqrt[3]{b_1x^2+b_2y^2+b_3z^2}=

=\sqrt[3]{\frac{b_1x^3}{x}+\frac{b_2y^3}{y}+\frac{b_3z^3}{z}}=

=\sqrt[3]{\frac{b_2y^3}{x}+\frac{b_2y^3}{y}+\frac{b_2y^3}{z}}=

=y \sqrt[3]{b_2} \sqrt[3]{\frac{1}{x}+\frac{1}{y}+\frac{1}{z}}= y \sqrt[3]{b_2} (*)

\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}= \dfrac{\sqrt[3]{b_1}}{y \sqrt[3]{b_2}}+\dfrac{\sqrt[3]{b_2}}{y \sqrt[3]{b_2}}+\dfrac{\sqrt[3]{b_3}}{y \sqrt[3]{b_2}}=1 \rightarrow{}

\rightarrow{} \sqrt[3]{b_1}+\sqrt[3]{b_2}+\sqrt[3]{b_3}=y \sqrt[3]{b_2} (**)

For (*) and (**):

\sqrt[3]{b_1x^2+b_2y^2+b_3z^2}=\sqrt[3] {b_1}+\sqrt[3] {b_2} + \sqrt[3] {b_3}

Regards.
 

Similar threads

Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 16 ·
Replies
16
Views
1K
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K