MHB Prove Inequality Challenge for $a\in \Bbb{Z^+}$

AI Thread Summary
The discussion centers on proving the inequality $\dfrac{2}{2-\sqrt{2}}>\dfrac{1}{1\sqrt{1}}+\dfrac{1}{2\sqrt{2}}+\dfrac{1}{3\sqrt{3}}+\cdots+\dfrac{1}{a\sqrt{a}}$ for positive integers $a$. Participants are encouraged to explore various approaches to solve the challenge, with one user sharing their solution. However, some responses indicate that the provided solution may not be correct. The conversation highlights the importance of collaboration and alternative methods in tackling mathematical inequalities. Engaging in this challenge can deepen understanding of inequalities in mathematics.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $a\in \Bbb{Z^+}$, prove that $\dfrac{2}{2-\sqrt{2}}>\dfrac{1}{1\sqrt{1}}+\dfrac{1}{2\sqrt{2}}+\dfrac{1}{3\sqrt{3}}+\cdots+\dfrac{1}{a\sqrt{a}}$.
 
Mathematics news on Phys.org
My solution:

Let:

$$S\equiv\sum_{k=1}^{\infty}\left(k^{-\frac{3}{2}}\right)$$

Using graphical tools, we can easily see that:

$$S<1+\int_{1}^{\infty}u^{-\frac{3}{2}}\,du$$

To evaluate the integral $I$, we may write:

$$I=\lim_{t\to\infty}\left(\int_{1}^{t}u^{-\frac{3}{2}}\,du\right)$$

Applying the anti-derivative form of the FTOC, there results:

$$I=-2\lim_{t\to\infty}\left(\left.u^{-\frac{1}{2}}\right|_{1}^t\right)=2$$

Hence, we have $S<3$ and we may state

$$S_a<S<3<\frac{2}{2-\sqrt{2}}=2+\sqrt{2}$$

Shown as desired. :)
 
MarkFL said:
My solution:

Let:

$$S\equiv\sum_{k=1}^{\infty}\left(k^{-\frac{3}{2}}\right)$$

Using graphical tools, we can easily see that:

$$S<1+\int_{1}^{\infty}u^{-\frac{3}{2}}\,du$$

To evaluate the integral $I$, we may write:

$$I=\lim_{t\to\infty}\left(\int_{1}^{t}u^{-\frac{3}{2}}\,du\right)$$

Applying the anti-derivative form of the FTOC, there results:

$$I=-2\lim_{t\to\infty}\left(\left.u^{-\frac{1}{2}}\right|_{1}^t\right)=2$$

Hence, we have $S<3$ and we may state

$$S_a<S<3<\frac{2}{2-\sqrt{2}}=2+\sqrt{2}$$

Shown as desired. :)

Awesome, MarkFL!:cool:(Yes) And I welcome others to try it with other approach too!(Happy)
 
Hint to solve the challenge using elementary method:

Telescoping series...
 
anemone said:
Let $a\in \Bbb{Z^+}$, prove that $\dfrac{2}{2-\sqrt{2}}>\dfrac{1}{1\sqrt{1}}+\dfrac{1}{2\sqrt{2}}+\dfrac{1}{3\sqrt{3}}+\cdots+\dfrac{1}{a\sqrt{a}}$.
my solution:
$A=\dfrac{2}{2-\sqrt{2}}=\dfrac {1}{1-\dfrac{\sqrt 2}{2}}$
$B=\dfrac{1}{1\sqrt{1}}+\dfrac{1}{2\sqrt{2}}+\dfrac{1}{3\sqrt{3}}+\cdots+\dfrac{1}{a\sqrt{a}}$
$ =1+\dfrac {\sqrt 2}{2^2}+\dfrac {\sqrt 3}{3^2}+\dfrac {\sqrt 4}{4^2}+------+\dfrac {\sqrt a}{a^2}$
$A$ is a infinite geometric sum with ratio $r=\dfrac {\sqrt 2}{2}$, and first term $A_1=1$
$\therefore A>B$
 
Albert said:
my solution:
$A=\dfrac{2}{2-\sqrt{2}}=\dfrac {1}{1-\dfrac{\sqrt 2}{2}}$
$B=\dfrac{1}{1\sqrt{1}}+\dfrac{1}{2\sqrt{2}}+\dfrac{1}{3\sqrt{3}}+\cdots+\dfrac{1}{a\sqrt{a}}$
$ =1+\dfrac {\sqrt 2}{2^2}+\dfrac {\sqrt 3}{3^2}+\dfrac {\sqrt 4}{4^2}+------+\dfrac {\sqrt a}{a^2}$
$A$ is a infinite geometric sum with ratio $r=\dfrac {\sqrt 2}{2}$, and first term $A_1=1$
$\therefore A>B$

not correct because

nth term of A = $\dfrac{1}{2^{\frac{n}{2}}}$
and nth term of B =$\dfrac{1}{n\sqrt n}$
after certain terms the term of A is smaller
 
$A=\dfrac{2}{2-\sqrt{2}}=\dfrac {1}{1-\dfrac{\sqrt 2}{2}}=2+\sqrt 2$
$B=\dfrac{1}{1\sqrt{1}}+\dfrac{1}{2\sqrt{2}}+\dfrac{1}{3\sqrt{3}}+\cdots+\dfrac{1}{a\sqrt{a}}$
$A$ is a infinite geometric sum with ratio $r=\dfrac {\sqrt 2}{2}$, and first term $a_1=1 , a_n=\dfrac {1}{2^{(n-1)/2}}$
$B$ is a $P$ series with p=1.5 ,$b_1=1$ ,and $b_n=\dfrac {1}{n^{1.5}}$ Both $A$ and $B$ convergent
$B=\sum\dfrac{1}{n^{1.5}}=\dfrac{1}{1\sqrt{1}}+\dfrac{1}{2\sqrt{2}}+\dfrac{1}{3\sqrt{3}}+\cdots+\dfrac{1}{a\sqrt{a}}$
$B<1+1+\dfrac {1}{2}+\dfrac {1}{4}+\dfrac{1}{8}+------=1+2=3<A$
I did not use "Telescoping series"
hope anemone can show us how to use "Telescoping series"
 
Last edited:
Solution of other:

Note that it's always true that for all $a\in \Bbb{Z^+}$, $\dfrac{1}{4a^3}<\dfrac{1}{4a^3-3a-1}$.

From here we get

$\dfrac{1}{4a^3}<\dfrac{1}{(a-1)(2a+1)^2}$

$\dfrac{(2a+1)^2}{a}<\dfrac{4a^2}{a-1}$

$\dfrac{2a+1}{\sqrt{a}}<\dfrac{2a}{\sqrt{a-1}}$

$\dfrac{2a+1}{a\sqrt{a}}<\dfrac{2}{\sqrt{a-1}}$

$\dfrac{1}{a\sqrt{a}}<\dfrac{2}{\sqrt{a-1}}-\dfrac{2}{\sqrt{a}}$

So we see

$$\begin{align*}\sum_{i=2}^{a}\dfrac{1}{a\sqrt{a}}&<\dfrac{2}{\sqrt{1}}-\dfrac{2}{\sqrt{2}}+\dfrac{2}{\sqrt{2}}-\dfrac{2}{\sqrt{3}}+\dfrac{2}{\sqrt{3}}-\dfrac{2}{\sqrt{4}}+\cdots+\dfrac{2}{\sqrt{a-2}}-\dfrac{2}{\sqrt{a-1}}+\dfrac{2}{\sqrt{a-1}}-\dfrac{2}{\sqrt{a}}\\&<\dfrac{2}{\sqrt{1}}-\dfrac{2}{\sqrt{a}}\end{align*}$$

and therefore we get

$\begin{align*}\dfrac{1}{1\sqrt{1}}+\dfrac{1}{2\sqrt{2}}+\dfrac{1}{3\sqrt{3}}+\cdots+\dfrac{1}{a\sqrt{a}}&<1+\dfrac{2}{\sqrt{1}}-\dfrac{2}{\sqrt{a}}\\&<3-\dfrac{2}{\sqrt{a}}<3+\dfrac{1}{\sqrt{2}+1}=\dfrac{2}{2-\sqrt{2}}\,\,\,\text{(Q.E.D)}\end{align*}$
 
Back
Top