Prove Inequality Challenge for $a\in \Bbb{Z^+}$

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Challenge Inequality
Click For Summary

Discussion Overview

The discussion centers around proving the inequality $\dfrac{2}{2-\sqrt{2}}>\dfrac{1}{1\sqrt{1}}+\dfrac{1}{2\sqrt{2}}+\dfrac{1}{3\sqrt{3}}+\cdots+\dfrac{1}{a\sqrt{a}}$ for positive integers $a$. The scope includes mathematical reasoning and problem-solving approaches.

Discussion Character

  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • Post 1 presents the inequality challenge for $a\in \Bbb{Z^+}$.
  • Post 2 contains a proposed solution, though details are not provided.
  • Post 3 expresses encouragement for others to attempt different approaches.
  • Post 4 offers a hint for solving the challenge using elementary methods.
  • Post 5 reiterates the inequality challenge and presents another solution attempt.
  • Post 6 critiques a solution as incorrect without specifying the reasons.
  • Post 7 mentions an alternative solution but does not elaborate on its content.

Areas of Agreement / Disagreement

Participants have not reached a consensus on the validity of the proposed solutions, and multiple competing approaches and critiques are present.

Contextual Notes

Some solutions are presented but lack detailed justification, and there are unresolved critiques regarding correctness.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $a\in \Bbb{Z^+}$, prove that $\dfrac{2}{2-\sqrt{2}}>\dfrac{1}{1\sqrt{1}}+\dfrac{1}{2\sqrt{2}}+\dfrac{1}{3\sqrt{3}}+\cdots+\dfrac{1}{a\sqrt{a}}$.
 
Mathematics news on Phys.org
My solution:

Let:

$$S\equiv\sum_{k=1}^{\infty}\left(k^{-\frac{3}{2}}\right)$$

Using graphical tools, we can easily see that:

$$S<1+\int_{1}^{\infty}u^{-\frac{3}{2}}\,du$$

To evaluate the integral $I$, we may write:

$$I=\lim_{t\to\infty}\left(\int_{1}^{t}u^{-\frac{3}{2}}\,du\right)$$

Applying the anti-derivative form of the FTOC, there results:

$$I=-2\lim_{t\to\infty}\left(\left.u^{-\frac{1}{2}}\right|_{1}^t\right)=2$$

Hence, we have $S<3$ and we may state

$$S_a<S<3<\frac{2}{2-\sqrt{2}}=2+\sqrt{2}$$

Shown as desired. :)
 
MarkFL said:
My solution:

Let:

$$S\equiv\sum_{k=1}^{\infty}\left(k^{-\frac{3}{2}}\right)$$

Using graphical tools, we can easily see that:

$$S<1+\int_{1}^{\infty}u^{-\frac{3}{2}}\,du$$

To evaluate the integral $I$, we may write:

$$I=\lim_{t\to\infty}\left(\int_{1}^{t}u^{-\frac{3}{2}}\,du\right)$$

Applying the anti-derivative form of the FTOC, there results:

$$I=-2\lim_{t\to\infty}\left(\left.u^{-\frac{1}{2}}\right|_{1}^t\right)=2$$

Hence, we have $S<3$ and we may state

$$S_a<S<3<\frac{2}{2-\sqrt{2}}=2+\sqrt{2}$$

Shown as desired. :)

Awesome, MarkFL!:cool:(Yes) And I welcome others to try it with other approach too!(Happy)
 
Hint to solve the challenge using elementary method:

Telescoping series...
 
anemone said:
Let $a\in \Bbb{Z^+}$, prove that $\dfrac{2}{2-\sqrt{2}}>\dfrac{1}{1\sqrt{1}}+\dfrac{1}{2\sqrt{2}}+\dfrac{1}{3\sqrt{3}}+\cdots+\dfrac{1}{a\sqrt{a}}$.
my solution:
$A=\dfrac{2}{2-\sqrt{2}}=\dfrac {1}{1-\dfrac{\sqrt 2}{2}}$
$B=\dfrac{1}{1\sqrt{1}}+\dfrac{1}{2\sqrt{2}}+\dfrac{1}{3\sqrt{3}}+\cdots+\dfrac{1}{a\sqrt{a}}$
$ =1+\dfrac {\sqrt 2}{2^2}+\dfrac {\sqrt 3}{3^2}+\dfrac {\sqrt 4}{4^2}+------+\dfrac {\sqrt a}{a^2}$
$A$ is a infinite geometric sum with ratio $r=\dfrac {\sqrt 2}{2}$, and first term $A_1=1$
$\therefore A>B$
 
Albert said:
my solution:
$A=\dfrac{2}{2-\sqrt{2}}=\dfrac {1}{1-\dfrac{\sqrt 2}{2}}$
$B=\dfrac{1}{1\sqrt{1}}+\dfrac{1}{2\sqrt{2}}+\dfrac{1}{3\sqrt{3}}+\cdots+\dfrac{1}{a\sqrt{a}}$
$ =1+\dfrac {\sqrt 2}{2^2}+\dfrac {\sqrt 3}{3^2}+\dfrac {\sqrt 4}{4^2}+------+\dfrac {\sqrt a}{a^2}$
$A$ is a infinite geometric sum with ratio $r=\dfrac {\sqrt 2}{2}$, and first term $A_1=1$
$\therefore A>B$

not correct because

nth term of A = $\dfrac{1}{2^{\frac{n}{2}}}$
and nth term of B =$\dfrac{1}{n\sqrt n}$
after certain terms the term of A is smaller
 
$A=\dfrac{2}{2-\sqrt{2}}=\dfrac {1}{1-\dfrac{\sqrt 2}{2}}=2+\sqrt 2$
$B=\dfrac{1}{1\sqrt{1}}+\dfrac{1}{2\sqrt{2}}+\dfrac{1}{3\sqrt{3}}+\cdots+\dfrac{1}{a\sqrt{a}}$
$A$ is a infinite geometric sum with ratio $r=\dfrac {\sqrt 2}{2}$, and first term $a_1=1 , a_n=\dfrac {1}{2^{(n-1)/2}}$
$B$ is a $P$ series with p=1.5 ,$b_1=1$ ,and $b_n=\dfrac {1}{n^{1.5}}$ Both $A$ and $B$ convergent
$B=\sum\dfrac{1}{n^{1.5}}=\dfrac{1}{1\sqrt{1}}+\dfrac{1}{2\sqrt{2}}+\dfrac{1}{3\sqrt{3}}+\cdots+\dfrac{1}{a\sqrt{a}}$
$B<1+1+\dfrac {1}{2}+\dfrac {1}{4}+\dfrac{1}{8}+------=1+2=3<A$
I did not use "Telescoping series"
hope anemone can show us how to use "Telescoping series"
 
Last edited:
Solution of other:

Note that it's always true that for all $a\in \Bbb{Z^+}$, $\dfrac{1}{4a^3}<\dfrac{1}{4a^3-3a-1}$.

From here we get

$\dfrac{1}{4a^3}<\dfrac{1}{(a-1)(2a+1)^2}$

$\dfrac{(2a+1)^2}{a}<\dfrac{4a^2}{a-1}$

$\dfrac{2a+1}{\sqrt{a}}<\dfrac{2a}{\sqrt{a-1}}$

$\dfrac{2a+1}{a\sqrt{a}}<\dfrac{2}{\sqrt{a-1}}$

$\dfrac{1}{a\sqrt{a}}<\dfrac{2}{\sqrt{a-1}}-\dfrac{2}{\sqrt{a}}$

So we see

$$\begin{align*}\sum_{i=2}^{a}\dfrac{1}{a\sqrt{a}}&<\dfrac{2}{\sqrt{1}}-\dfrac{2}{\sqrt{2}}+\dfrac{2}{\sqrt{2}}-\dfrac{2}{\sqrt{3}}+\dfrac{2}{\sqrt{3}}-\dfrac{2}{\sqrt{4}}+\cdots+\dfrac{2}{\sqrt{a-2}}-\dfrac{2}{\sqrt{a-1}}+\dfrac{2}{\sqrt{a-1}}-\dfrac{2}{\sqrt{a}}\\&<\dfrac{2}{\sqrt{1}}-\dfrac{2}{\sqrt{a}}\end{align*}$$

and therefore we get

$\begin{align*}\dfrac{1}{1\sqrt{1}}+\dfrac{1}{2\sqrt{2}}+\dfrac{1}{3\sqrt{3}}+\cdots+\dfrac{1}{a\sqrt{a}}&<1+\dfrac{2}{\sqrt{1}}-\dfrac{2}{\sqrt{a}}\\&<3-\dfrac{2}{\sqrt{a}}<3+\dfrac{1}{\sqrt{2}+1}=\dfrac{2}{2-\sqrt{2}}\,\,\,\text{(Q.E.D)}\end{align*}$
 

Similar threads

  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
921
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K