Prove Inequality Problem for Real Numbers $a, b, c$ with $a + b + c = 1$

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Inequality
Click For Summary

Discussion Overview

The discussion revolves around proving an inequality involving real numbers $a$, $b$, and $c$ constrained by the condition $a + b + c = 1$. The focus is on the mathematical formulation and potential proofs of the inequality.

Discussion Character

  • Mathematical reasoning
  • Homework-related

Main Points Raised

  • Some participants present the inequality to be proven, which is stated as $$\frac{1}{3^{a+1}}+\frac{1}{3^{b+1}}+\frac{1}{3^{c+1}}\ge \left(\frac{a}{3^a}+\frac{b}{3^b}+\frac{c}{3^c}\right)$$.
  • Multiple participants reiterate the same inequality without providing distinct solutions or approaches.
  • One participant offers a hint related to the proof, although the content of the hint is not specified.
  • Some participants express their solutions, but the details of these solutions are not elaborated in the provided posts.
  • There are informal greetings exchanged among participants, indicating a collaborative atmosphere.

Areas of Agreement / Disagreement

The discussion does not present a consensus on the proof of the inequality, as multiple participants have reiterated the problem without resolving it or agreeing on a specific approach.

Contextual Notes

Limitations include the lack of detailed solutions or methods proposed by participants, as well as the absence of any mathematical steps or assumptions that might clarify the proof process.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $a,\,b$ and $c$ be real numbers such that $a+b+c=1$, prove that

$$\frac{1}{3^{a+1}}+\frac{1}{3^{b+1}}+\frac{1}{3^{c+1}}\ge \left(\frac{a}{3^a}+\frac{b}{3^b}+\frac{c}{3^c}\right)$$.
 
Mathematics news on Phys.org
anemone said:
Let $a,\,b$ and $c$ be real numbers such that $a+b+c=1$, prove that

$$\frac{1}{3^{a+1}}+\frac{1}{3^{b+1}}+\frac{1}{3^{c+1}}\ge \left(\frac{a}{3^a}+\frac{b}{3^b}+\frac{c}{3^c}\right)$$.

Hint:

If $$a\ge b \ge c$$, then we would get $$\frac{1}{3^c}\ge \frac{1}{3^b} \ge \frac{1}{3^a}ᵃ$$.
 
anemone said:
Let $a,\,b$ and $c$ be real numbers such that $a+b+c=1$, prove that

$$\frac{1}{3^{a+1}}+\frac{1}{3^{b+1}}+\frac{1}{3^{c+1}}\ge \left(\frac{a}{3^a}+\frac{b}{3^b}+\frac{c}{3^c}\right)$$.

My solution:
WLOG, let $$a\ge b \ge c$$ and hence $$\frac{1}{3^c}\ge \frac{1}{3^b} \ge \frac{1}{3^a}ᵃ$$.

Apply the Chebyshev's inequality we have:

$$\begin{align*}3\left(\frac{a}{3^a}+\frac{b}{3^b}+\frac{c}{3^c}\right)&\le \left(a+b+c\right)\left(\frac{1}{3^a}+\frac{1}{3^b}+\frac{1}{3^c}\right)\\&\le \left(1\right)\left(\frac{1}{3^a}+\frac{1}{3^b}+\frac{1}{3^c}\right)\end{align*}$$

and therefore

$$\frac{1}{3^{a+1}}+\frac{1}{3^{b+1}}+\frac{1}{3^{c+1}}\ge \left(\frac{a}{3^a}+\frac{b}{3^b}+\frac{c}{3^c}\right)$$ (Q.E.D.)
 
A small comment and question:

Hi, anemone

Thankyou so much for your indefatigable contributions to this interesting site!(Yes)
You, MarkFL et al. are really doing a great job. Thankyou so much!I have a small comment/question to this challenge.Maybe the inequality is not Chebyshev (statistics), but Cauchy-Schwarz (inner product)??Even if so, I do not understand how to use it in the context. If I define two vectors:\[\bar{u} = \begin{pmatrix} a\\ b\\ c \end{pmatrix}, \: \: \: \bar{v} = \begin{pmatrix} \ 1/3^a\\ 1/3^b \\ 1/3^c \end{pmatrix}\]then using the Cauchy-Schwarz inequality:

\[\left ( \sum_{i=1}^{n} u_iv_i\right )^2 \leq \left ( \sum_{j=1}^{n}u_j^2 \right )\left ( \sum_{k=1}^{n} v_k^2\right )\]

- I get:

\[\left ( \frac{a}{3^a}+\frac{b}{3^b}+\frac{c}{3^c} \right )^2 \leq \left ( a^2+b^2+c^2 \right )\left ( \frac{1}{3^{2a}} + \frac{1}{3^{2b}}+ \frac{1}{3^{2c}}\right )\]How can I ommit squaring?Thankyou in advance for clearing my confusion … ;)
 
Last edited:
anemone said:
My solution:
WLOG, let $$a\ge b \ge c$$ and hence $$\frac{1}{3^c}\ge \frac{1}{3^b} \ge \frac{1}{3^a}ᵃ$$.

Apply the Chebyshev's inequality we have:

$$\begin{align*}3\left(\frac{a}{3^a}+\frac{b}{3^b}+\frac{c}{3^c}\right)&\le \left(a+b+c\right)\left(\frac{1}{3^a}+\frac{1}{3^b}+\frac{1}{3^c}\right)\\&\le \left(1\right)\left(\frac{1}{3^a}+\frac{1}{3^b}+\frac{1}{3^c}\right)\end{align*}$$

and therefore

$$\frac{1}{3^{a+1}}+\frac{1}{3^{b+1}}+\frac{1}{3^{c+1}}\ge \left(\frac{a}{3^a}+\frac{b}{3^b}+\frac{c}{3^c}\right)$$ (Q.E.D.)
Hi lfdahl(Smile),

The inequality formula that I used is the Chebyshev's inequality that says:

If $x_1\ge x_2\ge \cdots\ge x_n$ and $y_1\ge y_2\ge \cdots\ge y_n$, then the following inequality holds:

$$n\left(\sum_{i=1}^{n}x_i y_i\right) \ge \left(\sum_{i=1}^{n} x_i\right)\left(\sum_{i=1}^{n} y_i\right)$$

On the other hand, if $x_1\ge x_2\ge \cdots\ge x_n$ and $y_n\ge y_{n-1}\ge \cdots\ge y_1$ then we have:

$$n\left(\sum_{i=1}^{n}x_i y_i\right) \le \left(\sum_{i=1}^{n} x_i\right)\left(\sum_{i=1}^{n} y_i\right)$$
 
Hi, anemone!

Thankyou very much for the explanation. Oh, oh .. I guess, I still have a lot to learn :o
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
963
  • · Replies 7 ·
Replies
7
Views
5K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K