MHB Prove Inequality Problem for Real Numbers $a, b, c$ with $a + b + c = 1$

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Inequality
Click For Summary
The discussion focuses on proving the inequality involving real numbers \(a\), \(b\), and \(c\) such that \(a + b + c = 1\). The inequality states that \(\frac{1}{3^{a+1}} + \frac{1}{3^{b+1}} + \frac{1}{3^{c+1}} \ge \left(\frac{a}{3^a} + \frac{b}{3^b} + \frac{c}{3^c}\right)\). Participants are encouraged to explore potential methods for proving this inequality, including hints and approaches. The conversation includes a mix of solutions and clarifications regarding the mathematical expressions involved. The thread emphasizes the importance of understanding the relationship between the variables in the context of the given constraint.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $a,\,b$ and $c$ be real numbers such that $a+b+c=1$, prove that

$$\frac{1}{3^{a+1}}+\frac{1}{3^{b+1}}+\frac{1}{3^{c+1}}\ge \left(\frac{a}{3^a}+\frac{b}{3^b}+\frac{c}{3^c}\right)$$.
 
Mathematics news on Phys.org
anemone said:
Let $a,\,b$ and $c$ be real numbers such that $a+b+c=1$, prove that

$$\frac{1}{3^{a+1}}+\frac{1}{3^{b+1}}+\frac{1}{3^{c+1}}\ge \left(\frac{a}{3^a}+\frac{b}{3^b}+\frac{c}{3^c}\right)$$.

Hint:

If $$a\ge b \ge c$$, then we would get $$\frac{1}{3^c}\ge \frac{1}{3^b} \ge \frac{1}{3^a}ᵃ$$.
 
anemone said:
Let $a,\,b$ and $c$ be real numbers such that $a+b+c=1$, prove that

$$\frac{1}{3^{a+1}}+\frac{1}{3^{b+1}}+\frac{1}{3^{c+1}}\ge \left(\frac{a}{3^a}+\frac{b}{3^b}+\frac{c}{3^c}\right)$$.

My solution:
WLOG, let $$a\ge b \ge c$$ and hence $$\frac{1}{3^c}\ge \frac{1}{3^b} \ge \frac{1}{3^a}ᵃ$$.

Apply the Chebyshev's inequality we have:

$$\begin{align*}3\left(\frac{a}{3^a}+\frac{b}{3^b}+\frac{c}{3^c}\right)&\le \left(a+b+c\right)\left(\frac{1}{3^a}+\frac{1}{3^b}+\frac{1}{3^c}\right)\\&\le \left(1\right)\left(\frac{1}{3^a}+\frac{1}{3^b}+\frac{1}{3^c}\right)\end{align*}$$

and therefore

$$\frac{1}{3^{a+1}}+\frac{1}{3^{b+1}}+\frac{1}{3^{c+1}}\ge \left(\frac{a}{3^a}+\frac{b}{3^b}+\frac{c}{3^c}\right)$$ (Q.E.D.)
 
A small comment and question:

Hi, anemone

Thankyou so much for your indefatigable contributions to this interesting site!(Yes)
You, MarkFL et al. are really doing a great job. Thankyou so much!I have a small comment/question to this challenge.Maybe the inequality is not Chebyshev (statistics), but Cauchy-Schwarz (inner product)??Even if so, I do not understand how to use it in the context. If I define two vectors:\[\bar{u} = \begin{pmatrix} a\\ b\\ c \end{pmatrix}, \: \: \: \bar{v} = \begin{pmatrix} \ 1/3^a\\ 1/3^b \\ 1/3^c \end{pmatrix}\]then using the Cauchy-Schwarz inequality:

\[\left ( \sum_{i=1}^{n} u_iv_i\right )^2 \leq \left ( \sum_{j=1}^{n}u_j^2 \right )\left ( \sum_{k=1}^{n} v_k^2\right )\]

- I get:

\[\left ( \frac{a}{3^a}+\frac{b}{3^b}+\frac{c}{3^c} \right )^2 \leq \left ( a^2+b^2+c^2 \right )\left ( \frac{1}{3^{2a}} + \frac{1}{3^{2b}}+ \frac{1}{3^{2c}}\right )\]How can I ommit squaring?Thankyou in advance for clearing my confusion … ;)
 
Last edited:
anemone said:
My solution:
WLOG, let $$a\ge b \ge c$$ and hence $$\frac{1}{3^c}\ge \frac{1}{3^b} \ge \frac{1}{3^a}ᵃ$$.

Apply the Chebyshev's inequality we have:

$$\begin{align*}3\left(\frac{a}{3^a}+\frac{b}{3^b}+\frac{c}{3^c}\right)&\le \left(a+b+c\right)\left(\frac{1}{3^a}+\frac{1}{3^b}+\frac{1}{3^c}\right)\\&\le \left(1\right)\left(\frac{1}{3^a}+\frac{1}{3^b}+\frac{1}{3^c}\right)\end{align*}$$

and therefore

$$\frac{1}{3^{a+1}}+\frac{1}{3^{b+1}}+\frac{1}{3^{c+1}}\ge \left(\frac{a}{3^a}+\frac{b}{3^b}+\frac{c}{3^c}\right)$$ (Q.E.D.)
Hi lfdahl(Smile),

The inequality formula that I used is the Chebyshev's inequality that says:

If $x_1\ge x_2\ge \cdots\ge x_n$ and $y_1\ge y_2\ge \cdots\ge y_n$, then the following inequality holds:

$$n\left(\sum_{i=1}^{n}x_i y_i\right) \ge \left(\sum_{i=1}^{n} x_i\right)\left(\sum_{i=1}^{n} y_i\right)$$

On the other hand, if $x_1\ge x_2\ge \cdots\ge x_n$ and $y_n\ge y_{n-1}\ge \cdots\ge y_1$ then we have:

$$n\left(\sum_{i=1}^{n}x_i y_i\right) \le \left(\sum_{i=1}^{n} x_i\right)\left(\sum_{i=1}^{n} y_i\right)$$
 
Hi, anemone!

Thankyou very much for the explanation. Oh, oh .. I guess, I still have a lot to learn :o
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
872
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 10 ·
Replies
10
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K