Prove Inequality Problem for Real Numbers $a, b, c$ with $a + b + c = 1$

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Inequality
Click For Summary
SUMMARY

The inequality problem for real numbers \(a, b, c\) with the constraint \(a + b + c = 1\) is established as follows: it is proven that \[ \frac{1}{3^{a+1}}+\frac{1}{3^{b+1}}+\frac{1}{3^{c+1}} \ge \left(\frac{a}{3^a}+\frac{b}{3^b}+\frac{c}{3^c}\right). \] This conclusion is derived through the application of algebraic manipulation and properties of inequalities, specifically focusing on the behavior of exponential functions under the given constraints.

PREREQUISITES
  • Understanding of real numbers and their properties
  • Familiarity with inequalities, particularly the AM-GM inequality
  • Knowledge of exponential functions and their behavior
  • Basic algebraic manipulation skills
NEXT STEPS
  • Study the AM-GM inequality and its applications in proving inequalities
  • Explore properties of exponential functions, particularly in the context of inequalities
  • Learn about Jensen's inequality and its relevance to convex functions
  • Investigate other inequality proofs involving constraints on sums of variables
USEFUL FOR

This discussion is beneficial for mathematicians, students studying real analysis, and anyone interested in advanced inequality proofs and their applications in mathematical problem-solving.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $a,\,b$ and $c$ be real numbers such that $a+b+c=1$, prove that

$$\frac{1}{3^{a+1}}+\frac{1}{3^{b+1}}+\frac{1}{3^{c+1}}\ge \left(\frac{a}{3^a}+\frac{b}{3^b}+\frac{c}{3^c}\right)$$.
 
Mathematics news on Phys.org
anemone said:
Let $a,\,b$ and $c$ be real numbers such that $a+b+c=1$, prove that

$$\frac{1}{3^{a+1}}+\frac{1}{3^{b+1}}+\frac{1}{3^{c+1}}\ge \left(\frac{a}{3^a}+\frac{b}{3^b}+\frac{c}{3^c}\right)$$.

Hint:

If $$a\ge b \ge c$$, then we would get $$\frac{1}{3^c}\ge \frac{1}{3^b} \ge \frac{1}{3^a}ᵃ$$.
 
anemone said:
Let $a,\,b$ and $c$ be real numbers such that $a+b+c=1$, prove that

$$\frac{1}{3^{a+1}}+\frac{1}{3^{b+1}}+\frac{1}{3^{c+1}}\ge \left(\frac{a}{3^a}+\frac{b}{3^b}+\frac{c}{3^c}\right)$$.

My solution:
WLOG, let $$a\ge b \ge c$$ and hence $$\frac{1}{3^c}\ge \frac{1}{3^b} \ge \frac{1}{3^a}ᵃ$$.

Apply the Chebyshev's inequality we have:

$$\begin{align*}3\left(\frac{a}{3^a}+\frac{b}{3^b}+\frac{c}{3^c}\right)&\le \left(a+b+c\right)\left(\frac{1}{3^a}+\frac{1}{3^b}+\frac{1}{3^c}\right)\\&\le \left(1\right)\left(\frac{1}{3^a}+\frac{1}{3^b}+\frac{1}{3^c}\right)\end{align*}$$

and therefore

$$\frac{1}{3^{a+1}}+\frac{1}{3^{b+1}}+\frac{1}{3^{c+1}}\ge \left(\frac{a}{3^a}+\frac{b}{3^b}+\frac{c}{3^c}\right)$$ (Q.E.D.)
 
A small comment and question:

Hi, anemone

Thankyou so much for your indefatigable contributions to this interesting site!(Yes)
You, MarkFL et al. are really doing a great job. Thankyou so much!I have a small comment/question to this challenge.Maybe the inequality is not Chebyshev (statistics), but Cauchy-Schwarz (inner product)??Even if so, I do not understand how to use it in the context. If I define two vectors:\[\bar{u} = \begin{pmatrix} a\\ b\\ c \end{pmatrix}, \: \: \: \bar{v} = \begin{pmatrix} \ 1/3^a\\ 1/3^b \\ 1/3^c \end{pmatrix}\]then using the Cauchy-Schwarz inequality:

\[\left ( \sum_{i=1}^{n} u_iv_i\right )^2 \leq \left ( \sum_{j=1}^{n}u_j^2 \right )\left ( \sum_{k=1}^{n} v_k^2\right )\]

- I get:

\[\left ( \frac{a}{3^a}+\frac{b}{3^b}+\frac{c}{3^c} \right )^2 \leq \left ( a^2+b^2+c^2 \right )\left ( \frac{1}{3^{2a}} + \frac{1}{3^{2b}}+ \frac{1}{3^{2c}}\right )\]How can I ommit squaring?Thankyou in advance for clearing my confusion … ;)
 
Last edited:
anemone said:
My solution:
WLOG, let $$a\ge b \ge c$$ and hence $$\frac{1}{3^c}\ge \frac{1}{3^b} \ge \frac{1}{3^a}ᵃ$$.

Apply the Chebyshev's inequality we have:

$$\begin{align*}3\left(\frac{a}{3^a}+\frac{b}{3^b}+\frac{c}{3^c}\right)&\le \left(a+b+c\right)\left(\frac{1}{3^a}+\frac{1}{3^b}+\frac{1}{3^c}\right)\\&\le \left(1\right)\left(\frac{1}{3^a}+\frac{1}{3^b}+\frac{1}{3^c}\right)\end{align*}$$

and therefore

$$\frac{1}{3^{a+1}}+\frac{1}{3^{b+1}}+\frac{1}{3^{c+1}}\ge \left(\frac{a}{3^a}+\frac{b}{3^b}+\frac{c}{3^c}\right)$$ (Q.E.D.)
Hi lfdahl(Smile),

The inequality formula that I used is the Chebyshev's inequality that says:

If $x_1\ge x_2\ge \cdots\ge x_n$ and $y_1\ge y_2\ge \cdots\ge y_n$, then the following inequality holds:

$$n\left(\sum_{i=1}^{n}x_i y_i\right) \ge \left(\sum_{i=1}^{n} x_i\right)\left(\sum_{i=1}^{n} y_i\right)$$

On the other hand, if $x_1\ge x_2\ge \cdots\ge x_n$ and $y_n\ge y_{n-1}\ge \cdots\ge y_1$ then we have:

$$n\left(\sum_{i=1}^{n}x_i y_i\right) \le \left(\sum_{i=1}^{n} x_i\right)\left(\sum_{i=1}^{n} y_i\right)$$
 
Hi, anemone!

Thankyou very much for the explanation. Oh, oh .. I guess, I still have a lot to learn :o
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
921
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K