MHB Prove L'Hopitals rule using Taylors expansion

  • Thread starter Thread starter ognik
  • Start date Start date
  • Tags Tags
    Expansion
Click For Summary
The discussion focuses on proving L'Hôpital's rule using Taylor expansion for functions that yield a 0/0 indeterminate form at a point. The user correctly identifies that higher-order terms can be ignored as they become negligible in the limit. They derive the limit of the ratio of derivatives, confirming that it equals the limit of the original functions' ratio. A suggestion is made to factor out the common term (x - x0) to simplify the expression further. The conclusion emphasizes that if the derivatives are continuous, the proof holds, affirming the validity of the approach.
ognik
Messages
626
Reaction score
2
I'm given that $ \frac{f\left({x}_{o}\right)}{g\left({x}_{o}\right)} =\frac{0}{0} $ and asked to show that:

$ \lim_{{x}\to{{x}_{0}}}\frac{f\left({x}\right)}{g\left({x}\right)} = \lim_{{x}\to{{x}_{0}}} \frac{f^{'} \left({x}\right)}{g^{'}\left({x}\right)} $
This should be easy, but I suspect I've not got it quite right. Using Taylor (not Maclauren):

$ f\left(x\right) =f\left({x}_{0}\right) + {f}^{'}\left({x}_{0}\right)\left(x - {x}_{0}\right) + {f}^{''}\frac{\left(x-{x}_{0}\right)^2}{2!} + ... $

1) Am I correct to be able to ignore terms in $ x^2 $ and higher powers - because $ \left(x-{x}_{0}\right) $ is very small in the limit?

Then I get $ \lim_{{x}\to{{x}_{0}}} \frac{f\left({x}\right)}{g\left({x}\right)} =
\lim_{{x}\to{{x}_{0}}} \frac{{f}^{'}\left({x}_{0}\right)\left(x-{x}_{0}\right)} {{g}^{'}\left({x}_{0}\right)\left(x-{x}_{0}\right)} =
\lim_{{x}\to{{x}_{0}}} \frac{{f}^{'}\left({x}_{0}\right)} {{g}^{'}\left({x}_{0}\right)} $

2) Can I argue, by 'reversing' $ _{{x}\to{{x}_{0}}} $, to let $ \lim_{{x}\to{{x}_{0}}} \frac{{f}^{'}\left({x}_{0}\right)} {{g}^{'}\left({x}_{0}\right)} =
\lim_{{x}\to{{x}_{0}}} \frac{{f}^{'}\left({x}\right)} {{g}^{'}\left({x}\right)} $

I get the feeling what I've done is clumsy and there is a better way?

Thanks for reading
 
Physics news on Phys.org
ognik said:
I'm given that $ \frac{f\left({x}_{o}\right)}{g\left({x}_{o}\right)} =\frac{0}{0} $ and asked to show that:

$ \lim_{{x}\to{{x}_{0}}}\frac{f\left({x}\right)}{g\left({x}\right)} = \lim_{{x}\to{{x}_{0}}} \frac{f^{'} \left({x}\right)}{g^{'}\left({x}\right)} $
This should be easy, but I suspect I've not got it quite right. Using Taylor (not Maclauren):

$ f\left(x\right) =f\left({x}_{0}\right) + {f}^{'}\left({x}_{0}\right)\left(x - {x}_{0}\right) + {f}^{''}\frac{\left(x-{x}_{0}\right)^2}{2!} + ... $

1) Am I correct to be able to ignore terms in $ x^2 $ and higher powers - because $ \left(x-{x}_{0}\right) $ is very small in the limit?

Then I get $ \lim_{{x}\to{{x}_{0}}} \frac{f\left({x}\right)}{g\left({x}\right)} =
\lim_{{x}\to{{x}_{0}}} \frac{{f}^{'}\left({x}_{0}\right)\left(x-{x}_{0}\right)} {{g}^{'}\left({x}_{0}\right)\left(x-{x}_{0}\right)} =
\lim_{{x}\to{{x}_{0}}} \frac{{f}^{'}\left({x}_{0}\right)} {{g}^{'}\left({x}_{0}\right)} $

2) Can I argue, by 'reversing' $ _{{x}\to{{x}_{0}}} $, to let $ \lim_{{x}\to{{x}_{0}}} \frac{{f}^{'}\left({x}_{0}\right)} {{g}^{'}\left({x}_{0}\right)} =
\lim_{{x}\to{{x}_{0}}} \frac{{f}^{'}\left({x}\right)} {{g}^{'}\left({x}\right)} $

I get the feeling what I've done is clumsy and there is a better way?

Thanks for reading

Yes that's correct. Alternatively you can factor the $x-x_0$ part and cancel it out.

\[\lim_{{x}\to{{x}_{0}}} \frac{f\left({x}\right)}{g\left({x}\right)} =
\lim_{{x}\to{{x}_{0}}} \frac{{f}^{'}\left({x}_{0}\right)\left(x-{x}_{0}\right)+\frac{f''(x_0)(x-x_0)^2}{2!}+\cdots} {{g}^{'}\left({x}_{0}\right)\left(x-{x}_{0}\right)+\frac{g''(x_0)(x-x_0)^2}{2!}+\cdots} = \lim_{{x}\to{{x}_{0}}} \frac{{f}^{'}\left({x}_{0}\right)+\frac{f''(x_0)(x-x_0)}{2!}+\cdots} {{g}^{'}\left({x}_{0}\right)+\frac{g''(x_0)(x-x_0)}{2!}+\cdots} = \frac{{f}^{'}\left({x}_{0}\right)} {{g}^{'}\left({x}_{0}\right)}\]

If $f'$ and $g'$ are continuous (in other words $f$ and $g$ are continuously differentiable) we have,

\[\lim_{{x}\to{{x}_{0}}} \frac{f\left({x}\right)}{g\left({x}\right)} = \lim_{x\rightarrow x_0}\frac{f'(x)}{g'(x)}\]

Hope this helps. :)
 
Thanks :-)
 
ognik said:
Thanks :-)

You are welcome. :)
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
Replies
4
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
3
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K