Prove L'Hopitals rule using Taylors expansion

  • Context: MHB 
  • Thread starter Thread starter ognik
  • Start date Start date
  • Tags Tags
    Expansion
Click For Summary
SUMMARY

This discussion focuses on proving L'Hôpital's Rule using Taylor expansion. It establishes that if \( \frac{f(x_0)}{g(x_0)} = \frac{0}{0} \), then \( \lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)} \). The participants confirm that higher-order terms can be ignored in the limit, allowing for the cancellation of \( (x - x_0) \) terms. The conclusion emphasizes the requirement for \( f' \) and \( g' \) to be continuous for the rule to hold.

PREREQUISITES
  • Understanding of limits in calculus
  • Familiarity with Taylor series expansion
  • Knowledge of derivatives and their continuity
  • Basic algebraic manipulation skills
NEXT STEPS
  • Study the derivation and applications of L'Hôpital's Rule in calculus
  • Learn about Taylor series and their convergence properties
  • Explore the implications of continuity in calculus
  • Investigate examples of indeterminate forms and their resolutions
USEFUL FOR

Students of calculus, mathematics educators, and anyone interested in understanding the application of L'Hôpital's Rule and Taylor expansions in solving limits.

ognik
Messages
626
Reaction score
2
I'm given that $ \frac{f\left({x}_{o}\right)}{g\left({x}_{o}\right)} =\frac{0}{0} $ and asked to show that:

$ \lim_{{x}\to{{x}_{0}}}\frac{f\left({x}\right)}{g\left({x}\right)} = \lim_{{x}\to{{x}_{0}}} \frac{f^{'} \left({x}\right)}{g^{'}\left({x}\right)} $
This should be easy, but I suspect I've not got it quite right. Using Taylor (not Maclauren):

$ f\left(x\right) =f\left({x}_{0}\right) + {f}^{'}\left({x}_{0}\right)\left(x - {x}_{0}\right) + {f}^{''}\frac{\left(x-{x}_{0}\right)^2}{2!} + ... $

1) Am I correct to be able to ignore terms in $ x^2 $ and higher powers - because $ \left(x-{x}_{0}\right) $ is very small in the limit?

Then I get $ \lim_{{x}\to{{x}_{0}}} \frac{f\left({x}\right)}{g\left({x}\right)} =
\lim_{{x}\to{{x}_{0}}} \frac{{f}^{'}\left({x}_{0}\right)\left(x-{x}_{0}\right)} {{g}^{'}\left({x}_{0}\right)\left(x-{x}_{0}\right)} =
\lim_{{x}\to{{x}_{0}}} \frac{{f}^{'}\left({x}_{0}\right)} {{g}^{'}\left({x}_{0}\right)} $

2) Can I argue, by 'reversing' $ _{{x}\to{{x}_{0}}} $, to let $ \lim_{{x}\to{{x}_{0}}} \frac{{f}^{'}\left({x}_{0}\right)} {{g}^{'}\left({x}_{0}\right)} =
\lim_{{x}\to{{x}_{0}}} \frac{{f}^{'}\left({x}\right)} {{g}^{'}\left({x}\right)} $

I get the feeling what I've done is clumsy and there is a better way?

Thanks for reading
 
Physics news on Phys.org
ognik said:
I'm given that $ \frac{f\left({x}_{o}\right)}{g\left({x}_{o}\right)} =\frac{0}{0} $ and asked to show that:

$ \lim_{{x}\to{{x}_{0}}}\frac{f\left({x}\right)}{g\left({x}\right)} = \lim_{{x}\to{{x}_{0}}} \frac{f^{'} \left({x}\right)}{g^{'}\left({x}\right)} $
This should be easy, but I suspect I've not got it quite right. Using Taylor (not Maclauren):

$ f\left(x\right) =f\left({x}_{0}\right) + {f}^{'}\left({x}_{0}\right)\left(x - {x}_{0}\right) + {f}^{''}\frac{\left(x-{x}_{0}\right)^2}{2!} + ... $

1) Am I correct to be able to ignore terms in $ x^2 $ and higher powers - because $ \left(x-{x}_{0}\right) $ is very small in the limit?

Then I get $ \lim_{{x}\to{{x}_{0}}} \frac{f\left({x}\right)}{g\left({x}\right)} =
\lim_{{x}\to{{x}_{0}}} \frac{{f}^{'}\left({x}_{0}\right)\left(x-{x}_{0}\right)} {{g}^{'}\left({x}_{0}\right)\left(x-{x}_{0}\right)} =
\lim_{{x}\to{{x}_{0}}} \frac{{f}^{'}\left({x}_{0}\right)} {{g}^{'}\left({x}_{0}\right)} $

2) Can I argue, by 'reversing' $ _{{x}\to{{x}_{0}}} $, to let $ \lim_{{x}\to{{x}_{0}}} \frac{{f}^{'}\left({x}_{0}\right)} {{g}^{'}\left({x}_{0}\right)} =
\lim_{{x}\to{{x}_{0}}} \frac{{f}^{'}\left({x}\right)} {{g}^{'}\left({x}\right)} $

I get the feeling what I've done is clumsy and there is a better way?

Thanks for reading

Yes that's correct. Alternatively you can factor the $x-x_0$ part and cancel it out.

\[\lim_{{x}\to{{x}_{0}}} \frac{f\left({x}\right)}{g\left({x}\right)} =
\lim_{{x}\to{{x}_{0}}} \frac{{f}^{'}\left({x}_{0}\right)\left(x-{x}_{0}\right)+\frac{f''(x_0)(x-x_0)^2}{2!}+\cdots} {{g}^{'}\left({x}_{0}\right)\left(x-{x}_{0}\right)+\frac{g''(x_0)(x-x_0)^2}{2!}+\cdots} = \lim_{{x}\to{{x}_{0}}} \frac{{f}^{'}\left({x}_{0}\right)+\frac{f''(x_0)(x-x_0)}{2!}+\cdots} {{g}^{'}\left({x}_{0}\right)+\frac{g''(x_0)(x-x_0)}{2!}+\cdots} = \frac{{f}^{'}\left({x}_{0}\right)} {{g}^{'}\left({x}_{0}\right)}\]

If $f'$ and $g'$ are continuous (in other words $f$ and $g$ are continuously differentiable) we have,

\[\lim_{{x}\to{{x}_{0}}} \frac{f\left({x}\right)}{g\left({x}\right)} = \lim_{x\rightarrow x_0}\frac{f'(x)}{g'(x)}\]

Hope this helps. :)
 
Thanks :-)
 
ognik said:
Thanks :-)

You are welcome. :)
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K