MHB Prove Moment of Inertia of Annulus w/ Radii 3m & 1m: 5m

AI Thread Summary
The discussion focuses on proving the moment of inertia of a uniform annulus with inner radius 1 meter and outer radius 3 meters. The area of the annulus is calculated, leading to the mass per unit area and the mass of a differential ring within the annulus. By applying integration techniques, the moment of inertia is derived using the formula I = (2M/(R^2 - r^2))∫x^3dx. After performing the integration and substituting the given values, it is confirmed that the moment of inertia equals 5m. The calculations and reasoning validate the initial claim regarding the moment of inertia of the annulus.
markosheehan
Messages
133
Reaction score
0
a uniform annulus consists of disc of radius 3 meters with a disc of radius 1 meters removed from its center. the mass of the annulus is m. Prove that the moment of inertia of the annulus about an axis through its center is 5m.
 
Mathematics news on Phys.org
Consider an annulus whose inner radius is $r$ and outer radius is $R$, and has mass $M$. The area of the face of the annulus is:

$$A=\pi\left(R^2-r^2\right)$$

The mass per unit area is:

$$M_A=\frac{M}{A}=\frac{M}{\pi\left(R^2-r^2\right)}$$

Next, consider a ring within the annulus having inner radius $x$ and outer radius $x+dx$. The mass of this ring is:

$$M_R=\frac{2M}{R^2-r^2}x\,dx$$

We know the moment of inertia for this ring is:

$$I_R=\frac{2M}{R^2-r^2}x\cdot x^2\,dx$$

And so the moment of inertia for the annulus is:

$$I=\frac{2M}{R^2-r^2}\int_r^R x^3\,dx$$

Can you proceed to carry out the integration and derive the formula into which you can put the given values for $r$ and $R$?
 
i don't really know how to continue could you show me.
 
markosheehan said:
i don't really know how to continue could you show me.

Okay, we have:

$$I=\frac{2M}{R^2-r^2}\int_r^R x^3\,dx$$

So, we may apply the power rule:

$$\int u^r\,du=\frac{u^{r+1}}{r+1}+C$$ where $$r\ne-1$$

And the anti-derivative form of the FTOC:

$$\int_a^b f(u)\,du=F(b)-F(a)$$

And we obtain:

$$I=\frac{2M}{R^2-r^2}\left[\frac{x^4}{4}\right]_r^R=\frac{M}{2\left(R^2-r^2\right)}\left[x^4\right]_r^R=\frac{M}{2\left(R^2-r^2\right)}\left(R^4-r^4\right)=\frac{M}{2}\left(R^2+r^2\right)$$

Now, we are given:

$$r=1,\,R=3,\,M=m$$

And so:

$$I=\frac{m}{2}\left(3^2+1^2\right)=5m$$

Does that make sense?
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top