MHB Prove Probability: Step-by-Step Guide

  • Thread starter Thread starter Niamh1
  • Start date Start date
  • Tags Tags
    Probability Proof
AI Thread Summary
The discussion revolves around proving a probability statement using the binomial theorem, specifically the equation (x+y)^n = Σ(n choose k)x^ky^(n-k). Participants explore the implications of setting x=1 and y=1, leading to the result 2^n. A key point made is the derivation of the sum S = Σ(r * (n choose r)), which connects to the binomial theorem and ultimately shows that 2S = n2^n. The conversation emphasizes the importance of understanding the relationship between the summation and the binomial theorem to achieve the proof. The discussion concludes with a focus on the method of connecting these mathematical concepts.
Niamh1
Messages
4
Reaction score
0
View attachment 6593

Prove the following

I literally have no idea where to start or what to do.
 

Attachments

  • Screenshot (189).png
    Screenshot (189).png
    2.4 KB · Views: 102
Mathematics news on Phys.org
Hi there. :)

The binomial theorem states that $$(x+y)^n = \sum_{k=0}^{n}\binom{n}{k}x^ky^{n-k}$$. What happens if you let $x=1$ and $y=1$?
 
Jameson said:
Hi there. :)

The binomial theorem states that $$(x+y)^n = \sum_{k=0}^{n}\binom{n}{k}x^ky^{n-k}$$. What happens if you let $x=1$ and $y=1$?

Doesn't really help me to be honest.
 
Hi Niamh,

Let $S = \sum_{r = 1}^n r\binom{n}{r}$. Then

$$S = 0\binom{n}{0} + 1\binom{n}{1} + 2\binom{n}{2} + \cdots + (n-1)\binom{n}{n-1} + n\binom{n}{n}$$
$$S = n\binom{n}{n} + (n-1)\binom{n}{n-1} + \cdots + 1\binom{n}{1} + 0\binom{n}{0}$$

Using the fact that $\binom{n}{r} = \binom{n}{n-r}$ for $0 \le r \le n$, add the two equations column-wise, then use the binomial theorem, to obtain $2S = n2^n$. Dividing by $2$ yields the result.
 
Here's another easy proof using calculus:

$$(x+1)^n=\sum_{r=0}^n{{n}\choose{r}}x^r$$

Take derivatives:

$$n(x+1)^{n-1}=\sum_{r=1}^nr{{n}\choose{r}}x^{r-1}$$

Eavaluate at x=1:

$$n2^{n-1}=\sum_{r=1}^nr{{n}\choose{r}}=\sum_{r=0}^nr{{n}\choose{r}}$$
 
Niamh said:
Doesn't really help me to be honest.

Hi Niamh,

My post and the two below show the main connection you need, that is how to connect the summation sign to something resembling $2^n$. At first glance this is a quite strange equation and the key is the binomial theorem as I mentioned. If you let $x=1$ and $y=1$ you get:

$$(x+y)^n =(1+1)^n=2^n= \sum_{k=0}^{n}\binom{n}{k}x^ky^{n-k}=\sum_{k=0}^{n}\binom{n}{k}1^k1^{n-k}=\sum_{k=0}^{n}\binom{n}{k}$$

Using this trick we have now connected $2^n$ to something with this summation. That was the idea behind my post. :)

What have you tried?
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top