MHB Prove $\prod_{k=1}^{2015} (1+\frac{1}{(2k+1)^3})< \frac{\sqrt{5}}{2}$

  • Thread starter Thread starter anemone
  • Start date Start date
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove that $$\prod_{k=1}^{2015}\left(1+\dfrac{1}{(2k+1)^3}\right)\lt \dfrac{\sqrt{5}}{2}.$$
 
Mathematics news on Phys.org
How is this an infinite product?

-Dan
 
Hi Dan!

Ops! I'm sorry! When I was creating the thread, my mind was struggling about if I should make the problem an infinite product or like the one I stated in the thread, as both are less than $\dfrac{\sqrt{5}}{2}$.

And when I finally made up my mind to make it a finite product, I forgot to change the title of the thread accordingly.

I'll re-title the thread to correct the wrong.
 
anemone said:
Prove that $$\prod_{k=1}^{2015}\left(1+\dfrac{1}{(2k+1)^3}\right)\lt \dfrac{\sqrt{5}}{2}.$$

Hint:

Note that for $x>1$, $\ln x<x-1$ always hold.
 
anemone said:
Hint #1:

Note that for $x>1$, $\ln x<x-1$ always hold.


Hint #2:
Apéry's constant $1+\dfrac{1}{2^3}+\dfrac{1}{3^3}+\cdots=1.2020569...$ is a handy tool in proving the desired inequality $$\prod_{k=1}^{2015}\left(1+\dfrac{1}{(2k+1)^3}\right)\lt \dfrac{\sqrt{5}}{2}$$.
 
My solution:
Note that for $x>1$, we have $\ln x<x-1$, replacing $x$ by $x+1$ we get $\ln(1+x)<x$.

So we have

$\ln\left(1+\dfrac{1}{3^3}\right)<\dfrac{1}{3^3}$

$\ln\left(1+\dfrac{1}{5^3}\right)<\dfrac{1}{5^3}$

$\ln\left(1+\dfrac{1}{7^3}\right)<\dfrac{1}{7^3}$

$\ln\left(1+\dfrac{1}{9^3}\right)<\dfrac{1}{9^3}$

$\,\,\,\,\,\,\,\,\,\,\,\,\vdots$

$\ln\left(1+\dfrac{1}{4031^3}\right)<\dfrac{1}{4031^3}$

Adding them all up gives

$\ln\left(1+\dfrac{1}{3^3}\right)+\ln\left(1+\dfrac{1}{5^3}\right)+\cdots+\ln\left(1+\dfrac{1}{4031^3}\right)<\dfrac{1}{3^3}+\dfrac{1}{5^3}+\cdots+\dfrac{1}{4031^3}$

Convert the sum of natural logarithms into the natural logarithm of a product, we get

$\ln\left(\left(1+\dfrac{1}{3^3}\right)\left(1+\dfrac{1}{5^3}\right)\cdots\left(1+\dfrac{1}{4031^3}\right)\right)<\dfrac{1}{3^3}+\dfrac{1}{5^3}+\cdots+\dfrac{1}{4031^3}=$

Apéry's constant tells us

$$\lim_{{n}\to{\infty}}\left(1+\dfrac{1}{2^3}+\dfrac{1}{3^3}+\cdots+\dfrac{1}{n^3}\right)=\zeta (3)$$

$1+\dfrac{1}{2^3}+\dfrac{1}{3^3}+\dfrac{1}{4^3}+\dfrac{1}{5^3}+\dfrac{1}{6^3}+\cdots =\zeta (3)$

$\left(1+\dfrac{1}{3^3}+\dfrac{1}{5^3}+\cdots\right)+\left(\dfrac{1}{2^3}+\dfrac{1}{4^3}+\dfrac{1}{6^3}\cdots\right)=\zeta (3)$

$\left(1+\dfrac{1}{3^3}+\dfrac{1}{5^3}+\cdots\right)+\dfrac{1}{2^3}\left(1+\dfrac{1}{2^3}+\dfrac{1}{3^3}+\cdots\right)=\zeta (3)$

$\left(1+\dfrac{1}{3^3}+\dfrac{1}{5^3}+\cdots\right)+\dfrac{1}{2^3}\zeta(3)=\zeta (3)$

$\left(1+\dfrac{1}{3^3}+\dfrac{1}{5^3}+\cdots\right)=\zeta (3)\left(1-\dfrac{1}{2^3}\right)=\dfrac{7\zeta(3)}{8}$

$\dfrac{1}{3^3}+\dfrac{1}{5^3}+\cdots=\dfrac{7\zeta(3)}{8}-1$

Therefore we get

$\begin{align*}\ln\left(\left(1+\dfrac{1}{3^3}\right)\left(1+\dfrac{1}{5^3}\right)\cdots\left(1+\dfrac{1}{4031^3}\right)\right)&<\dfrac{1}{3^3}+\dfrac{1}{5^3}+\cdots+\dfrac{1}{4031^3}\\&<\dfrac{1}{3^3}+\dfrac{1}{5^3}+\cdots=\dfrac{7\zeta(3)}{8}-1\end{align*}$

$\left(1+\dfrac{1}{3^3}\right)\left(1+\dfrac{1}{5^3}\right)\cdots\left(1+\dfrac{1}{4031^3}\right)<e^{\frac{7\zeta(3)}{8}-1}=e^{\frac{7(1.202)}{8}-1}\approx 1.053<\dfrac{\sqrt{5}}{2}$ and we are hence done.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top