MHB Prove $\prod_{k=1}^{2015} (1+\frac{1}{(2k+1)^3})< \frac{\sqrt{5}}{2}$

  • Thread starter Thread starter anemone
  • Start date Start date
Click For Summary
The discussion focuses on proving that the product of the series from k=1 to 2015, specifically $$\prod_{k=1}^{2015}\left(1+\dfrac{1}{(2k+1)^3}\right),$$ is less than $$\dfrac{\sqrt{5}}{2}.$$ Participants explore the nature of the product and its relation to infinite products. The conversation includes hints and potential strategies for approaching the proof. The goal is to establish the inequality rigorously through mathematical reasoning.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove that $$\prod_{k=1}^{2015}\left(1+\dfrac{1}{(2k+1)^3}\right)\lt \dfrac{\sqrt{5}}{2}.$$
 
Mathematics news on Phys.org
How is this an infinite product?

-Dan
 
Hi Dan!

Ops! I'm sorry! When I was creating the thread, my mind was struggling about if I should make the problem an infinite product or like the one I stated in the thread, as both are less than $\dfrac{\sqrt{5}}{2}$.

And when I finally made up my mind to make it a finite product, I forgot to change the title of the thread accordingly.

I'll re-title the thread to correct the wrong.
 
anemone said:
Prove that $$\prod_{k=1}^{2015}\left(1+\dfrac{1}{(2k+1)^3}\right)\lt \dfrac{\sqrt{5}}{2}.$$

Hint:

Note that for $x>1$, $\ln x<x-1$ always hold.
 
anemone said:
Hint #1:

Note that for $x>1$, $\ln x<x-1$ always hold.


Hint #2:
Apéry's constant $1+\dfrac{1}{2^3}+\dfrac{1}{3^3}+\cdots=1.2020569...$ is a handy tool in proving the desired inequality $$\prod_{k=1}^{2015}\left(1+\dfrac{1}{(2k+1)^3}\right)\lt \dfrac{\sqrt{5}}{2}$$.
 
My solution:
Note that for $x>1$, we have $\ln x<x-1$, replacing $x$ by $x+1$ we get $\ln(1+x)<x$.

So we have

$\ln\left(1+\dfrac{1}{3^3}\right)<\dfrac{1}{3^3}$

$\ln\left(1+\dfrac{1}{5^3}\right)<\dfrac{1}{5^3}$

$\ln\left(1+\dfrac{1}{7^3}\right)<\dfrac{1}{7^3}$

$\ln\left(1+\dfrac{1}{9^3}\right)<\dfrac{1}{9^3}$

$\,\,\,\,\,\,\,\,\,\,\,\,\vdots$

$\ln\left(1+\dfrac{1}{4031^3}\right)<\dfrac{1}{4031^3}$

Adding them all up gives

$\ln\left(1+\dfrac{1}{3^3}\right)+\ln\left(1+\dfrac{1}{5^3}\right)+\cdots+\ln\left(1+\dfrac{1}{4031^3}\right)<\dfrac{1}{3^3}+\dfrac{1}{5^3}+\cdots+\dfrac{1}{4031^3}$

Convert the sum of natural logarithms into the natural logarithm of a product, we get

$\ln\left(\left(1+\dfrac{1}{3^3}\right)\left(1+\dfrac{1}{5^3}\right)\cdots\left(1+\dfrac{1}{4031^3}\right)\right)<\dfrac{1}{3^3}+\dfrac{1}{5^3}+\cdots+\dfrac{1}{4031^3}=$

Apéry's constant tells us

$$\lim_{{n}\to{\infty}}\left(1+\dfrac{1}{2^3}+\dfrac{1}{3^3}+\cdots+\dfrac{1}{n^3}\right)=\zeta (3)$$

$1+\dfrac{1}{2^3}+\dfrac{1}{3^3}+\dfrac{1}{4^3}+\dfrac{1}{5^3}+\dfrac{1}{6^3}+\cdots =\zeta (3)$

$\left(1+\dfrac{1}{3^3}+\dfrac{1}{5^3}+\cdots\right)+\left(\dfrac{1}{2^3}+\dfrac{1}{4^3}+\dfrac{1}{6^3}\cdots\right)=\zeta (3)$

$\left(1+\dfrac{1}{3^3}+\dfrac{1}{5^3}+\cdots\right)+\dfrac{1}{2^3}\left(1+\dfrac{1}{2^3}+\dfrac{1}{3^3}+\cdots\right)=\zeta (3)$

$\left(1+\dfrac{1}{3^3}+\dfrac{1}{5^3}+\cdots\right)+\dfrac{1}{2^3}\zeta(3)=\zeta (3)$

$\left(1+\dfrac{1}{3^3}+\dfrac{1}{5^3}+\cdots\right)=\zeta (3)\left(1-\dfrac{1}{2^3}\right)=\dfrac{7\zeta(3)}{8}$

$\dfrac{1}{3^3}+\dfrac{1}{5^3}+\cdots=\dfrac{7\zeta(3)}{8}-1$

Therefore we get

$\begin{align*}\ln\left(\left(1+\dfrac{1}{3^3}\right)\left(1+\dfrac{1}{5^3}\right)\cdots\left(1+\dfrac{1}{4031^3}\right)\right)&<\dfrac{1}{3^3}+\dfrac{1}{5^3}+\cdots+\dfrac{1}{4031^3}\\&<\dfrac{1}{3^3}+\dfrac{1}{5^3}+\cdots=\dfrac{7\zeta(3)}{8}-1\end{align*}$

$\left(1+\dfrac{1}{3^3}\right)\left(1+\dfrac{1}{5^3}\right)\cdots\left(1+\dfrac{1}{4031^3}\right)<e^{\frac{7\zeta(3)}{8}-1}=e^{\frac{7(1.202)}{8}-1}\approx 1.053<\dfrac{\sqrt{5}}{2}$ and we are hence done.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

Replies
1
Views
1K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K