MHB Prove $\prod_{k=1}^{2015} (1+\frac{1}{(2k+1)^3})< \frac{\sqrt{5}}{2}$

  • Thread starter Thread starter anemone
  • Start date Start date
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove that $$\prod_{k=1}^{2015}\left(1+\dfrac{1}{(2k+1)^3}\right)\lt \dfrac{\sqrt{5}}{2}.$$
 
Mathematics news on Phys.org
How is this an infinite product?

-Dan
 
Hi Dan!

Ops! I'm sorry! When I was creating the thread, my mind was struggling about if I should make the problem an infinite product or like the one I stated in the thread, as both are less than $\dfrac{\sqrt{5}}{2}$.

And when I finally made up my mind to make it a finite product, I forgot to change the title of the thread accordingly.

I'll re-title the thread to correct the wrong.
 
anemone said:
Prove that $$\prod_{k=1}^{2015}\left(1+\dfrac{1}{(2k+1)^3}\right)\lt \dfrac{\sqrt{5}}{2}.$$

Hint:

Note that for $x>1$, $\ln x<x-1$ always hold.
 
anemone said:
Hint #1:

Note that for $x>1$, $\ln x<x-1$ always hold.


Hint #2:
Apéry's constant $1+\dfrac{1}{2^3}+\dfrac{1}{3^3}+\cdots=1.2020569...$ is a handy tool in proving the desired inequality $$\prod_{k=1}^{2015}\left(1+\dfrac{1}{(2k+1)^3}\right)\lt \dfrac{\sqrt{5}}{2}$$.
 
My solution:
Note that for $x>1$, we have $\ln x<x-1$, replacing $x$ by $x+1$ we get $\ln(1+x)<x$.

So we have

$\ln\left(1+\dfrac{1}{3^3}\right)<\dfrac{1}{3^3}$

$\ln\left(1+\dfrac{1}{5^3}\right)<\dfrac{1}{5^3}$

$\ln\left(1+\dfrac{1}{7^3}\right)<\dfrac{1}{7^3}$

$\ln\left(1+\dfrac{1}{9^3}\right)<\dfrac{1}{9^3}$

$\,\,\,\,\,\,\,\,\,\,\,\,\vdots$

$\ln\left(1+\dfrac{1}{4031^3}\right)<\dfrac{1}{4031^3}$

Adding them all up gives

$\ln\left(1+\dfrac{1}{3^3}\right)+\ln\left(1+\dfrac{1}{5^3}\right)+\cdots+\ln\left(1+\dfrac{1}{4031^3}\right)<\dfrac{1}{3^3}+\dfrac{1}{5^3}+\cdots+\dfrac{1}{4031^3}$

Convert the sum of natural logarithms into the natural logarithm of a product, we get

$\ln\left(\left(1+\dfrac{1}{3^3}\right)\left(1+\dfrac{1}{5^3}\right)\cdots\left(1+\dfrac{1}{4031^3}\right)\right)<\dfrac{1}{3^3}+\dfrac{1}{5^3}+\cdots+\dfrac{1}{4031^3}=$

Apéry's constant tells us

$$\lim_{{n}\to{\infty}}\left(1+\dfrac{1}{2^3}+\dfrac{1}{3^3}+\cdots+\dfrac{1}{n^3}\right)=\zeta (3)$$

$1+\dfrac{1}{2^3}+\dfrac{1}{3^3}+\dfrac{1}{4^3}+\dfrac{1}{5^3}+\dfrac{1}{6^3}+\cdots =\zeta (3)$

$\left(1+\dfrac{1}{3^3}+\dfrac{1}{5^3}+\cdots\right)+\left(\dfrac{1}{2^3}+\dfrac{1}{4^3}+\dfrac{1}{6^3}\cdots\right)=\zeta (3)$

$\left(1+\dfrac{1}{3^3}+\dfrac{1}{5^3}+\cdots\right)+\dfrac{1}{2^3}\left(1+\dfrac{1}{2^3}+\dfrac{1}{3^3}+\cdots\right)=\zeta (3)$

$\left(1+\dfrac{1}{3^3}+\dfrac{1}{5^3}+\cdots\right)+\dfrac{1}{2^3}\zeta(3)=\zeta (3)$

$\left(1+\dfrac{1}{3^3}+\dfrac{1}{5^3}+\cdots\right)=\zeta (3)\left(1-\dfrac{1}{2^3}\right)=\dfrac{7\zeta(3)}{8}$

$\dfrac{1}{3^3}+\dfrac{1}{5^3}+\cdots=\dfrac{7\zeta(3)}{8}-1$

Therefore we get

$\begin{align*}\ln\left(\left(1+\dfrac{1}{3^3}\right)\left(1+\dfrac{1}{5^3}\right)\cdots\left(1+\dfrac{1}{4031^3}\right)\right)&<\dfrac{1}{3^3}+\dfrac{1}{5^3}+\cdots+\dfrac{1}{4031^3}\\&<\dfrac{1}{3^3}+\dfrac{1}{5^3}+\cdots=\dfrac{7\zeta(3)}{8}-1\end{align*}$

$\left(1+\dfrac{1}{3^3}\right)\left(1+\dfrac{1}{5^3}\right)\cdots\left(1+\dfrac{1}{4031^3}\right)<e^{\frac{7\zeta(3)}{8}-1}=e^{\frac{7(1.202)}{8}-1}\approx 1.053<\dfrac{\sqrt{5}}{2}$ and we are hence done.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top