Note that for $x>1$, we have $\ln x<x-1$, replacing $x$ by $x+1$ we get $\ln(1+x)<x$.
So we have
$\ln\left(1+\dfrac{1}{3^3}\right)<\dfrac{1}{3^3}$
$\ln\left(1+\dfrac{1}{5^3}\right)<\dfrac{1}{5^3}$
$\ln\left(1+\dfrac{1}{7^3}\right)<\dfrac{1}{7^3}$
$\ln\left(1+\dfrac{1}{9^3}\right)<\dfrac{1}{9^3}$
$\,\,\,\,\,\,\,\,\,\,\,\,\vdots$
$\ln\left(1+\dfrac{1}{4031^3}\right)<\dfrac{1}{4031^3}$
Adding them all up gives
$\ln\left(1+\dfrac{1}{3^3}\right)+\ln\left(1+\dfrac{1}{5^3}\right)+\cdots+\ln\left(1+\dfrac{1}{4031^3}\right)<\dfrac{1}{3^3}+\dfrac{1}{5^3}+\cdots+\dfrac{1}{4031^3}$
Convert the sum of natural logarithms into the natural logarithm of a product, we get
$\ln\left(\left(1+\dfrac{1}{3^3}\right)\left(1+\dfrac{1}{5^3}\right)\cdots\left(1+\dfrac{1}{4031^3}\right)\right)<\dfrac{1}{3^3}+\dfrac{1}{5^3}+\cdots+\dfrac{1}{4031^3}=$
Apéry's constant tells us
$$\lim_{{n}\to{\infty}}\left(1+\dfrac{1}{2^3}+\dfrac{1}{3^3}+\cdots+\dfrac{1}{n^3}\right)=\zeta (3)$$
$1+\dfrac{1}{2^3}+\dfrac{1}{3^3}+\dfrac{1}{4^3}+\dfrac{1}{5^3}+\dfrac{1}{6^3}+\cdots =\zeta (3)$
$\left(1+\dfrac{1}{3^3}+\dfrac{1}{5^3}+\cdots\right)+\left(\dfrac{1}{2^3}+\dfrac{1}{4^3}+\dfrac{1}{6^3}\cdots\right)=\zeta (3)$
$\left(1+\dfrac{1}{3^3}+\dfrac{1}{5^3}+\cdots\right)+\dfrac{1}{2^3}\left(1+\dfrac{1}{2^3}+\dfrac{1}{3^3}+\cdots\right)=\zeta (3)$
$\left(1+\dfrac{1}{3^3}+\dfrac{1}{5^3}+\cdots\right)+\dfrac{1}{2^3}\zeta(3)=\zeta (3)$
$\left(1+\dfrac{1}{3^3}+\dfrac{1}{5^3}+\cdots\right)=\zeta (3)\left(1-\dfrac{1}{2^3}\right)=\dfrac{7\zeta(3)}{8}$
$\dfrac{1}{3^3}+\dfrac{1}{5^3}+\cdots=\dfrac{7\zeta(3)}{8}-1$
Therefore we get
$\begin{align*}\ln\left(\left(1+\dfrac{1}{3^3}\right)\left(1+\dfrac{1}{5^3}\right)\cdots\left(1+\dfrac{1}{4031^3}\right)\right)&<\dfrac{1}{3^3}+\dfrac{1}{5^3}+\cdots+\dfrac{1}{4031^3}\\&<\dfrac{1}{3^3}+\dfrac{1}{5^3}+\cdots=\dfrac{7\zeta(3)}{8}-1\end{align*}$
$\left(1+\dfrac{1}{3^3}\right)\left(1+\dfrac{1}{5^3}\right)\cdots\left(1+\dfrac{1}{4031^3}\right)<e^{\frac{7\zeta(3)}{8}-1}=e^{\frac{7(1.202)}{8}-1}\approx 1.053<\dfrac{\sqrt{5}}{2}$ and we are hence done.