- #1
jackmell
- 1,807
- 54
Homework Statement
Let ##H## be a finite subgroup of the group ##G = \mathbb{Q}/\mathbb{Z}##. Prove ##G/H## is isomorphic to ##G##.
Homework Equations
[/B]
My plan is to model the proof after a simple example but I would need to show there is a bijection between ##\frac{\mathbb{Q}/\mathbb{Z}}{ H}## and ##\mathbb{Q}/\mathbb{Z}## which I'm not sure how to do.
Consider first an easier example: Let ##G=\mathbb{Z}## and ##H=2\mathbb{Z}##. Then even though we intuitively sense ##H## is smaller than ##G##, ##G\cong H## since the map ##\phi: G\to H## with ##\phi(n)=2n## is a bijective homomorphism: ##\phi(0)=0, \phi(n+m)=\phi(n)+\phi(m)##. And this is the same case with mod'ing-out any finite subgroup of ##\mathbb{Q}/\mathbb{Z}##: The factor group ##\displaystyle\frac{\mathbb{Q}/\mathbb{Z}}{\mathbb{H}}## will still contain a countable infinite number of elements and therefore has the same cardinality as ##\mathbb{Q}/\mathbb{Z}## (however, not sure that's sufficient to demonstrate the two groups are isomorphic).
The Attempt at a Solution
Let:
##
\begin{align}
\mathbb{Q}/\mathbb{Z}&=\{\mathbb{Z},\frac{p_1}{q_1}+\mathbb{Z},\frac{p_2}{q_2}+\mathbb{Z},\cdots\}: 0\leq \frac{p_i}{q_i}<1\\
\mathbb{H}&=\{\mathbb{Z},\frac{r_1}{s_1}+\mathbb{Z},\frac{r_2}{s_2}+\mathbb{Z},\cdots,\frac{r_n}{s_n}+\mathbb{Z}\} :
\end{align}
##
such that ##H## is a finite subgroup of ##\mathbb{Q}/\mathbb{Z}##. We can then form the factor group:
##
\frac{\mathbb{Q}/\mathbb{Z}}{H}=\left\{\mathbb{Z},\frac{a_1}{b_1}+\mathbb{Z},\frac{a_2}{b_2}+\mathbb{Z},\cdots\right\}: \frac{a_i}{b_i}\notin \left\{\frac{r_i}{s_i}\right\}
##
Claim ##\displaystyle\frac{\mathbb{Q}/\mathbb{Z}}{H}## has the same cardinality as ##\mathbb{Q}/\mathbb{Z}##.
Construct the following mapping:
##
\phi:\displaystyle\frac{\mathbb{Q}/\mathbb{Z}}{H}\to\mathbb{Q}/\mathbb{Z}
##
with
##
\phi(g+H)=g+\mathbb{Z}
##
Now,
##
\begin{align}
\displaystyle g+H&=\left(\frac{p_i}{q_i}+\mathbb{Z}\right)+\left(\frac{r_i}{s_1}+\mathbb{Z}\right)=\left(\frac{p_i}{q_i}+\frac{r_i}{s_i}\right)+\mathbb{Z} \\
g+Z&=\frac{p_i}{q_i}+\mathbb{Z}
\end{align}
##
and ##\left(\frac{p_i}{q_i}+\frac{r_i}{s_i}\right)+\mathbb{Z}=\frac{p_i}{q_i}+\mathbb{Z}## when ##\displaystyle\frac{r_i}{s_i}\in \mathbb{Z}## for ##\displaystyle 0\leq \frac{r_i}{s_i}< 1## which is never the case so that ##\frac{\mathbb{Q}/ \mathbb{Z}}{H}## and ##\mathbb{Q}/\mathbb{Z}## have the same cardinality.
This makes intuitive sense to me but I'm not sure how to prove this mapping is indeed a bijection which I think is required to prove there is an isomorphism between the two groups.
Thanks for reading,
Jack
Edit: Correct typos
Last edited: