MHB Prove Real Roots of $x^3+ax+b=0$ When $a<0$

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Roots
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
The equation $x^3+ax+b=0$ has three distinct real roots. Show that $a<0$.
 
Mathematics news on Phys.org
My solution:

We see that if $a=0$, then if $b=0$ the roots are not distinct. By Descartes' rule of signs, if $b>0$, there will only be one negative real root and if $b<0$ there will only be one positive real root. So, $a\ne0$.

Next, let's consider if $b=0$, then we have:

$$x\left(x^2+a \right)=0$$

We see that we must have $a<0$ in order to have 3 distinct real roots.

Next, let's consider if $b>0$.

By Descartes' rule of signs, and given that there are 3 distinct real roots, there will be 2 positive roots if there are 2 sign changes between successive coefficients. That is if $a<0$. Mutiplying the odd-powered terms by -1, we then have one sign change and thus there will be 1 negative root.

And finally, let's consider if $b<0$.

Descartes' rule of signs tells us that if $a$ is positive then there can only be at most 1 positive root. If $a$ is negative then there will be 1 positive root and 2 negative roots.

Thus, in all cases concerning $b$ we find that $a<0$.
 
MarkFL said:
My solution:

We see that if $a=0$, then if $b=0$ the roots are not distinct. By Descartes' rule of signs, if $b>0$, there will only be one negative real root and if $b<0$ there will only be one positive real root. So, $a\ne0$.

Next, let's consider if $b=0$, then we have:

$$x\left(x^2+a \right)=0$$

We see that we must have $a<0$ in order to have 3 distinct real roots.

Next, let's consider if $b>0$.

By Descartes' rule of signs, and given that there are 3 distinct real roots, there will be 2 positive roots if there are 2 sign changes between successive coefficients. That is if $a<0$. Mutiplying the odd-powered terms by -1, we then have one sign change and thus there will be 1 negative root.

And finally, let's consider if $b<0$.

Descartes' rule of signs tells us that if $a$ is positive then there can only be at most 1 positive root. If $a$ is negative then there will be 1 positive root and 2 negative roots.

Thus, in all cases concerning $b$ we find that $a<0$.

Well done, MarkFL! I solved this problem using an entirely different approach, and hence you have just given me another insight about how to tackle it using the way you did... for this I want to say thank you!:)
 
anemone said:
The equation $x^3+ax+b=0$ has three distinct real roots. Show that $a<0$.
My solution uses calculus.
[sp]If $f(x) = x^3+ax+b$ then $f'(x) = 3x^2 + a$.

If $a>0$ then $f'(x)$ can never be zero, so $f$ has no turning points and can therefore cross the real axis only once. Thus $f(x) = 0$ has only one real solution.

If $a=0$ then the equation $f(x) = 0$ becomes $x^3 + b = 0$, whose only real root is the cube root of $-b$.

The only remaining possibility is that $a<0$, so that condition is necessary for the equation to have three real roots.[/sp]
 
Opalg said:
My solution uses calculus.
[sp]If $f(x) = x^3+ax+b$ then $f'(x) = 3x^2 + a$.

If $a>0$ then $f'(x)$ can never be zero, so $f$ has no turning points and can therefore cross the real axis only once. Thus $f(x) = 0$ has only one real solution.

If $a=0$ then the equation $f(x) = 0$ becomes $x^3 + b = 0$, whose only real root is the cube root of $-b$.

The only remaining possibility is that $a<0$, so that condition is necessary for the equation to have three real roots.[/sp]

Thanks, Opalg for participating!:) Your calculus approach seems so nice and neat!:o

My solution:
Let $m,\,n,\,k$ be the three real distinct roots for $y=x^3+ax+b$.

Then Vieta's Formula tells us:

$m+n+k=0$, $mn+nk+mk=a$

Notice that

$(m+n+k)^2=m^2+n^2+k^2+2(mn+nk+mk)$---(1)

Hence, by substituting the above two into (1) we get

$0=m^2+n^2+k^2+2a$

This equation holds true iff $a<0$, and we're done.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top