MHB Prove Ring with Identity on Set S with One Element x

  • Thread starter Thread starter Stephen88
  • Start date Start date
  • Tags Tags
    Identity Ring
Stephen88
Messages
60
Reaction score
0
On a set S with exactly one element x,
define x + x = x, x*x = x. Prove that S is a ring.
The way I think about this problem is be showing that it verifies certain axioms...like associativity,commutativity,identity,inverse for addition and commutativity for multiplication and a (b + c) = ab + ac .. (a + b) c = ac + bc.
For Addition the first two i think it is obvious since
1.x+x=x+x..
2.(x+x)+x=x+(x+x)
For Identity since x+x=x then 0_S=x.
For the inverse I don't see how since the set has only one element x which equal 0_S...I guess I don't have to check the last two axioms because S is not a ring.
Am I doing this right?
 
Physics news on Phys.org
We have x + (-x) = 0 where both -x and 0 are defined to be x, so there is no problem with an additive inverse.
 
uh sorry...yes that is true then for multiplication commutativity (x*x)*=x*(x*x) and also x(x+x)=x +x and (x+x)x=x+x again.Will this suffice or is there something else.?..because it seemed quite short.
 
StefanM said:
for multiplication commutativity (x*x)*=x*(x*x)
The fact (x * x) * x = x * (x * x) is called associativity.

StefanM said:
x(x+x)=x +x and (x+x)x=x+x again.
Distributivity says x(x+x) = x * x + x * x and (x+x) * x = x * x + x * x.

StefanM said:
Will this suffice or is there something else.?..because it seemed quite short.
Why don't you check the list of ring axioms, for example, in Wikipedia?
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
Back
Top