MHB Prove that A Real Root Exists in [-1, 1]

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Root
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Given $$f(x)=5tx^4+sx^3+3rx^2+qx+p$$ for $f(x)\in R$. If $r+t=-p$, prove that there is a real root for $f(x)=0$ in $[-1,1]$.
 
Mathematics news on Phys.org
Some ideas:

We rewrite the polynomial as
$$f(x)=5tx^4+sx^3+3rx^2+qx-r-t=0,$$
where we are setting it equal to zero. We evaluate $f(1)$ and $f(-1)$:
\begin{align*}
f(1)&=5t+s+3r+q-r-t=4t+2r+s+q\\
f(-1)&=5t-s+3r-q-r-t=4t+2r-s-q.
\end{align*}
Idea: if $f(1)\cdot f(-1)<0$, then by the Intermediate Value Theorem, we would have shown there is a root in $[-1,1]$. Now
$$f(1)\cdot f(-1)=(4t+2r)^{2}-(s+q)^{2}.$$
Not seeing where to go with this. There's nothing stopping $s=q=0$, with $4t+2r\not=0$, in which case I have not proved what I want to prove.
 
anemone said:
Given $$f(x)=5tx^4+sx^3+3rx^2+qx+p$$ for $f(x)\in R$. If $r+t=-p$, prove that there is a real root for $f(x)=0$ in $[-1,1]$.

Consider the polynomial $$p(x)=tx^5+(s/4)x^4+rx^3+(q/2)x^2+px-(s/4+q/2)$$.

Then $$p(1)=p(-1)=0$$ and so $$p$$ has an extremum in $$(-1,1)$$, so $$p'(x)$$ has a root in $$(-1,1)$$ ...

.
 
Last edited:
Thanks to both, Ackbach and zzephod for participating...

zzephod said:
Consider the polynomial $$p(x)=tx^5+(s/4)x^4+rx^3+(q/2)x^2+px-(s/4+q/2)$$.

Then $$p(1)=p(-1)=0$$ and so $$p$$ has an extremum in $$[-1,1]$$, so $$p'(x)$$ has a root in $$[-1,1]$$ ...

.

WoW! What an elegant way to approach this problem! Well done, zzephod!(Clapping)

And there is another quite straightforward and beautiful way to tackle it as well...therefore I'll wait for the inputs from other members for now...(Sun)
 
Another method proposed by other to solve this challenge problem is by using the integration method:

Hint:
$$\int_{-1}^1 p(x) dx=0$$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top