I Prove that a triangle with lattice points cannot be equilateral

JoeAllen
Messages
5
Reaction score
1
I assumed three points for a triangle P1 = (a, c), P2 = (c, d), P3 = (b, e)

and of course:
a, b, c, d, e∈Z
Using the distance formula between each of the points and setting them equal:
\sqrt { (b - a)^2 + (e - d)^2 } = \sqrt { (c - a)^2 + (d - d)^2 } = \sqrt { (b - c)^2 + (e - d)^2 }(e+d)2 = (c-a)2 - (b-a)2
(e+d)2 = (c-a)2 - (b-c)2

c2 - 2ac - b2 +2ab = -2ac + a2 - b2 + 2bc
c2 + 2ab = a2 + 2bc
c(c - 2b) = a(a - 2b)

Thus, for this to be true, a = c. But in this example, the distance between a and c would be 0. Thus, not a triangle and certainly not an equilateral triangle.

Where did I go wrong here? I'm bored waiting for Calculus II in the Fall and I'm going through Courant's Differential and Integral Calculus on my free time until then (Fall term probably starting in August/September, so I'm not worried if it takes a few months to get comfortable with Courant - Calculus I has been a breeze since I already knew most of the content before taking it).
 
Last edited:
Mathematics news on Phys.org
As for 2D lattice we can make one of the lattice points is (0,0) without losing generality.
Say other points are ##(n_1,n_2),(m_1,m_2)##
n_1^2+n_2^2=A
m_1^2+m_2^2=A
(n_1-m_1)^2+(n_2-m_2)^2=A
where A is square of the side length. You will find contradiction in this set of formla.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top