I Prove that a triangle with lattice points cannot be equilateral

AI Thread Summary
The discussion centers on proving that a triangle with lattice points cannot be equilateral. The user begins by defining three lattice points and applying the distance formula to establish equal side lengths. Through algebraic manipulation, they conclude that for the triangle to exist, one of the coordinates must equal another, resulting in a degenerate triangle. The conversation also touches on using a general approach with lattice points, leading to contradictions in the derived equations. Ultimately, the analysis supports the assertion that an equilateral triangle cannot be formed with lattice points.
JoeAllen
Messages
5
Reaction score
1
I assumed three points for a triangle P1 = (a, c), P2 = (c, d), P3 = (b, e)

and of course:
a, b, c, d, e∈Z
Using the distance formula between each of the points and setting them equal:
\sqrt { (b - a)^2 + (e - d)^2 } = \sqrt { (c - a)^2 + (d - d)^2 } = \sqrt { (b - c)^2 + (e - d)^2 }(e+d)2 = (c-a)2 - (b-a)2
(e+d)2 = (c-a)2 - (b-c)2

c2 - 2ac - b2 +2ab = -2ac + a2 - b2 + 2bc
c2 + 2ab = a2 + 2bc
c(c - 2b) = a(a - 2b)

Thus, for this to be true, a = c. But in this example, the distance between a and c would be 0. Thus, not a triangle and certainly not an equilateral triangle.

Where did I go wrong here? I'm bored waiting for Calculus II in the Fall and I'm going through Courant's Differential and Integral Calculus on my free time until then (Fall term probably starting in August/September, so I'm not worried if it takes a few months to get comfortable with Courant - Calculus I has been a breeze since I already knew most of the content before taking it).
 
Last edited:
Mathematics news on Phys.org
As for 2D lattice we can make one of the lattice points is (0,0) without losing generality.
Say other points are ##(n_1,n_2),(m_1,m_2)##
n_1^2+n_2^2=A
m_1^2+m_2^2=A
(n_1-m_1)^2+(n_2-m_2)^2=A
where A is square of the side length. You will find contradiction in this set of formla.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top