Prove that ## li(x)\sim \frac{x}{\log x} ##.

  • Thread starter Thread starter Math100
  • Start date Start date
Click For Summary
SUMMARY

The proof establishes that the logarithmic integral function, denoted as ## li(x) ##, is asymptotically equivalent to ## \frac{x}{\log x} ## as ## x ## approaches infinity. This is demonstrated using the Fundamental Theorem of Calculus and L'Hôpital's rule. The conclusion also connects this result to the Prime Number Theorem, showing that ## \pi(x) \sim li(x) ##. The analysis confirms that both functions grow at the same rate, reinforcing the relationship between prime numbers and logarithmic integrals.

PREREQUISITES
  • Understanding of asymptotic notation and limits
  • Familiarity with the Fundamental Theorem of Calculus
  • Knowledge of L'Hôpital's rule for evaluating limits
  • Basic concepts of number theory, particularly the Prime Number Theorem
NEXT STEPS
  • Study the application of L'Hôpital's rule in different contexts
  • Explore the implications of the Prime Number Theorem in number theory
  • Investigate the properties and applications of the logarithmic integral function
  • Learn about asymptotic analysis in mathematical proofs
USEFUL FOR

Mathematicians, students of number theory, and anyone interested in the relationships between prime numbers and logarithmic functions will benefit from this discussion.

Math100
Messages
817
Reaction score
230
Homework Statement
Prove that ## li(x)\sim \frac{x}{\log x} ##, using ## li(x)=\frac{x}{\log x}+\int_{2}^{x}\frac{dt}{\log^2 t}-\frac{2}{\log 2} ##. Deduce that the Prime Number Theorem can be expressed in the form ## \pi(x)\sim li(x) ##.
Relevant Equations
None.
Proof:

Let ## f ## and ## g ## be functions such that ## f ## and ## g ## are asymptotically equivalent if
## \lim_{x\rightarrow \infty}\frac{f(x)}{g(x)}=1 ##.
The Fundamental Theorem of Calculus states that if ## F ## is a function defined for all ## x ## in ## [a, b] ## by
## F(x)=\int_{a}^{x}f(t)dt ##, then ## F'(x)=f(x) ## where ## F ## is an antiderivative of ## f ##.
Consider ## F(x)=\int_{2}^{x}\frac{dt}{\log^2 t} ##.
Then ## F'(x)=\frac{1}{\log^2 x} ##.
Observe that
\begin{align*}
&\frac{d}{dx}(\frac{x}{\log x})=\frac{\log x\frac{dx}{dx}-x\frac{d}{dx}(\log x)}{\log^2 x}\\
&=\frac{\log x-\frac{x}{x}}{\log^2 x}=\frac{\log x-1}{\log^2 x}.\\
\end{align*}
Now we will show that ## \lim_{x\rightarrow \infty}\frac{li(x)}{\frac{x}{\log x}}=\lim_{x\rightarrow \infty}\frac{f(x)}{g(x)} ##.
Observe that ## \lim_{x\rightarrow \infty}(\frac{x}{\log x})=\frac{\infty}{\infty} ##.
By L'hopital's rule, we have that
## \lim_{x\rightarrow \infty}\frac{\frac{d}{dx}(x)}{\frac{d}{dx}(\log x)}=\lim_{x\rightarrow \infty}\frac{1}{\frac{1}{x}}=\lim_{x\rightarrow \infty}x=\infty ##.
This implies ## lim_{x\rightarrow \infty}li(x)=\lim_{x\rightarrow \infty}(\frac{x}{\log x}+\int_{2}^{x}\frac{dt}{\log^2 t}-\frac{2}{\log 2})=\infty ##,
so ## \lim_{x\rightarrow \infty}\frac{li(x)}{\frac{x}{\log x}}=\frac{\infty}{\infty} ##.
Applying L'Hopital's rule yields
\begin{align*}
&\lim_{x\rightarrow \infty}\frac{\frac{d}{dx}(li(x))}{\frac{d}{dx}(\frac{x}{\log x})}\\
&=\lim_{x\rightarrow \infty}\frac{\frac{d}{dx}(\frac{x}{\log x}+\int_{2}^{x}\frac{dt}{\log^2 t}-\frac{2}{\log 2})}{\frac{d}{dx}(\frac{x}{\log x})}\\
&=\lim_{x\rightarrow \infty}1+\frac{\frac{d}{dx}(\int_{2}^{x}\frac{dt}{\log^2 t}-\frac{2}{\log 2})}{\frac{d}{dx}(\frac{x}{\log x})}\\
&=\lim_{x\rightarrow \infty}1+\frac{\frac{1}{\log^2 x}}{\frac{\log x-1}{\log^2 x}}\\
&=\lim_{x\rightarrow \infty}1+\lim_{x\rightarrow \infty}\frac{1}{\log x-1}\\
&=1+0\\
&=1.\\
\end{align*}
Thus ## li(x)\sim \frac{x}{\log x} ##.
By the Prime Number Theorem, we have that ## \pi(x)\sim \frac{x}{\log x} ##.
Thus ## lim_{x\rightarrow \infty}\frac{\pi(x)}{li(x)}=\lim_{x\rightarrow \infty}(\frac{\pi(x)}{\frac{x}{\log x}}\cdot \frac{\frac{x}{\log x}}{li(x)})=1\cdot \frac{1}{1}=1 ##.
Therefore, ## li(x)\sim \frac{x}{\log x} ## and the Prime Number Theorem can be expressed in the form ## \pi(x)\sim li(x) ##.
 
Physics news on Phys.org
Math100 said:
Homework Statement:: Prove that ## li(x)\sim \frac{x}{\log x} ##, using ## li(x)=\frac{x}{\log x}+\int_{2}^{x}\frac{dt}{\log^2 t}-\frac{2}{\log 2} ##. Deduce that the Prime Number Theorem can be expressed in the form ## \pi(x)\sim li(x) ##.
Relevant Equations:: None.

Proof:

Let ## f ## and ## g ## be functions such that ## f ## and ## g ## are asymptotically equivalent if
## \lim_{x\rightarrow \infty}\frac{f(x)}{g(x)}=1 ##.
The Fundamental Theorem of Calculus states that if ## F ## is a function defined for all ## x ## in ## [a, b] ## by
## F(x)=\int_{a}^{x}f(t)dt ##, then ## F'(x)=f(x) ## where ## F ## is an antiderivative of ## f ##.
Consider ## F(x)=\int_{2}^{x}\frac{dt}{\log^2 t} ##.
Then ## F'(x)=\frac{1}{\log^2 x} ##.
Observe that
\begin{align*}
&\frac{d}{dx}(\frac{x}{\log x})=\frac{\log x\frac{dx}{dx}-x\frac{d}{dx}(\log x)}{\log^2 x}\\
&=\frac{\log x-\frac{x}{x}}{\log^2 x}=\frac{\log x-1}{\log^2 x}.\\
\end{align*}
Now we will show that ## \lim_{x\rightarrow \infty}\frac{li(x)}{\frac{x}{\log x}}=\lim_{x\rightarrow \infty}\frac{f(x)}{g(x)} ##.
Observe that ## \lim_{x\rightarrow \infty}(\frac{x}{\log x})=\frac{\infty}{\infty} ##.
By L'hopital's rule, we have that
## \lim_{x\rightarrow \infty}\frac{\frac{d}{dx}(x)}{\frac{d}{dx}(\log x)}=\lim_{x\rightarrow \infty}\frac{1}{\frac{1}{x}}=\lim_{x\rightarrow \infty}x=\infty ##.
This implies ## lim_{x\rightarrow \infty}li(x)=\lim_{x\rightarrow \infty}(\frac{x}{\log x}+\int_{2}^{x}\frac{dt}{\log^2 t}-\frac{2}{\log 2})=\infty ##,
so ## \lim_{x\rightarrow \infty}\frac{li(x)}{\frac{x}{\log x}}=\frac{\infty}{\infty} ##.
Applying L'Hopital's rule yields
\begin{align*}
&\lim_{x\rightarrow \infty}\frac{\frac{d}{dx}(li(x))}{\frac{d}{dx}(\frac{x}{\log x})}\\
&=\lim_{x\rightarrow \infty}\frac{\frac{d}{dx}(\frac{x}{\log x}+\int_{2}^{x}\frac{dt}{\log^2 t}-\frac{2}{\log 2})}{\frac{d}{dx}(\frac{x}{\log x})}\\
&=\lim_{x\rightarrow \infty}1+\frac{\frac{d}{dx}(\int_{2}^{x}\frac{dt}{\log^2 t}-\frac{2}{\log 2})}{\frac{d}{dx}(\frac{x}{\log x})}\\
&=\lim_{x\rightarrow \infty}1+\frac{\frac{1}{\log^2 x}}{\frac{\log x-1}{\log^2 x}}\\
&=\lim_{x\rightarrow \infty}1+\lim_{x\rightarrow \infty}\frac{1}{\log x-1}\\
&=1+0\\
&=1.\\
\end{align*}
Thus ## li(x)\sim \frac{x}{\log x} ##.
By the Prime Number Theorem, we have that ## \pi(x)\sim \frac{x}{\log x} ##.
Thus ## lim_{x\rightarrow \infty}\frac{\pi(x)}{li(x)}=\lim_{x\rightarrow \infty}(\frac{\pi(x)}{\frac{x}{\log x}}\cdot \frac{\frac{x}{\log x}}{li(x)})=1\cdot \frac{1}{1}=1 ##.
Therefore, ## li(x)\sim \frac{x}{\log x} ## and the Prime Number Theorem can be expressed in the form ## \pi(x)\sim li(x) ##.
You cannot calculate with infinity as if it was a number. You should delete everything between "Now we will show ..." until ##\frac{\infty }{\infty }.##

The last calculation (together with the derivative of ##x/\log(x)## from the beginning) is sufficient,
 
  • Like
Likes   Reactions: Math100
Wikipedia has a nice image about the difference between the curves:

PrimeNumberTheorem2.png


For more details, see:
https://www.physicsforums.com/insights/the-history-and-importance-of-the-riemann-hypothesis/
 
  • Informative
Likes   Reactions: Math100
fresh_42 said:
You cannot calculate with infinity as if it was a number. You should delete everything between "Now we will show ..." until ##\frac{\infty }{\infty }.##

The last calculation (together with the derivative of ##x/\log(x)## from the beginning) is sufficient,
Maybe I wrote too much.
 
  • Like
Likes   Reactions: fresh_42

Similar threads

  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
1K
Replies
7
Views
2K
  • · Replies 14 ·
Replies
14
Views
4K
  • · Replies 25 ·
Replies
25
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 7 ·
Replies
7
Views
7K