Prove that ## li(x)\sim \frac{x}{\log x} ##.

  • Thread starter Thread starter Math100
  • Start date Start date
Click For Summary

Homework Help Overview

The discussion revolves around proving the asymptotic equivalence of the logarithmic integral function, ## li(x) ##, and the function ## \frac{x}{\log x} ##. This involves exploring the behavior of these functions as ## x ## approaches infinity, particularly in the context of the Prime Number Theorem.

Discussion Character

  • Exploratory, Mathematical reasoning, Assumption checking

Approaches and Questions Raised

  • Participants discuss the definition of asymptotic equivalence and apply L'Hôpital's rule to analyze limits involving ## li(x) ## and ## \frac{x}{\log x} ##. There is also mention of the Fundamental Theorem of Calculus and its implications for the problem.

Discussion Status

The discussion includes attempts to prove the asymptotic relationship, with some participants suggesting that certain calculations may be excessive. There is a focus on the derivatives of the involved functions and their limits, but no consensus has been reached regarding the sufficiency of the provided arguments.

Contextual Notes

Some participants express concern about the treatment of infinity in calculations, indicating a need for careful consideration of mathematical rigor in the proof process.

Math100
Messages
823
Reaction score
234
Homework Statement
Prove that ## li(x)\sim \frac{x}{\log x} ##, using ## li(x)=\frac{x}{\log x}+\int_{2}^{x}\frac{dt}{\log^2 t}-\frac{2}{\log 2} ##. Deduce that the Prime Number Theorem can be expressed in the form ## \pi(x)\sim li(x) ##.
Relevant Equations
None.
Proof:

Let ## f ## and ## g ## be functions such that ## f ## and ## g ## are asymptotically equivalent if
## \lim_{x\rightarrow \infty}\frac{f(x)}{g(x)}=1 ##.
The Fundamental Theorem of Calculus states that if ## F ## is a function defined for all ## x ## in ## [a, b] ## by
## F(x)=\int_{a}^{x}f(t)dt ##, then ## F'(x)=f(x) ## where ## F ## is an antiderivative of ## f ##.
Consider ## F(x)=\int_{2}^{x}\frac{dt}{\log^2 t} ##.
Then ## F'(x)=\frac{1}{\log^2 x} ##.
Observe that
\begin{align*}
&\frac{d}{dx}(\frac{x}{\log x})=\frac{\log x\frac{dx}{dx}-x\frac{d}{dx}(\log x)}{\log^2 x}\\
&=\frac{\log x-\frac{x}{x}}{\log^2 x}=\frac{\log x-1}{\log^2 x}.\\
\end{align*}
Now we will show that ## \lim_{x\rightarrow \infty}\frac{li(x)}{\frac{x}{\log x}}=\lim_{x\rightarrow \infty}\frac{f(x)}{g(x)} ##.
Observe that ## \lim_{x\rightarrow \infty}(\frac{x}{\log x})=\frac{\infty}{\infty} ##.
By L'hopital's rule, we have that
## \lim_{x\rightarrow \infty}\frac{\frac{d}{dx}(x)}{\frac{d}{dx}(\log x)}=\lim_{x\rightarrow \infty}\frac{1}{\frac{1}{x}}=\lim_{x\rightarrow \infty}x=\infty ##.
This implies ## lim_{x\rightarrow \infty}li(x)=\lim_{x\rightarrow \infty}(\frac{x}{\log x}+\int_{2}^{x}\frac{dt}{\log^2 t}-\frac{2}{\log 2})=\infty ##,
so ## \lim_{x\rightarrow \infty}\frac{li(x)}{\frac{x}{\log x}}=\frac{\infty}{\infty} ##.
Applying L'Hopital's rule yields
\begin{align*}
&\lim_{x\rightarrow \infty}\frac{\frac{d}{dx}(li(x))}{\frac{d}{dx}(\frac{x}{\log x})}\\
&=\lim_{x\rightarrow \infty}\frac{\frac{d}{dx}(\frac{x}{\log x}+\int_{2}^{x}\frac{dt}{\log^2 t}-\frac{2}{\log 2})}{\frac{d}{dx}(\frac{x}{\log x})}\\
&=\lim_{x\rightarrow \infty}1+\frac{\frac{d}{dx}(\int_{2}^{x}\frac{dt}{\log^2 t}-\frac{2}{\log 2})}{\frac{d}{dx}(\frac{x}{\log x})}\\
&=\lim_{x\rightarrow \infty}1+\frac{\frac{1}{\log^2 x}}{\frac{\log x-1}{\log^2 x}}\\
&=\lim_{x\rightarrow \infty}1+\lim_{x\rightarrow \infty}\frac{1}{\log x-1}\\
&=1+0\\
&=1.\\
\end{align*}
Thus ## li(x)\sim \frac{x}{\log x} ##.
By the Prime Number Theorem, we have that ## \pi(x)\sim \frac{x}{\log x} ##.
Thus ## lim_{x\rightarrow \infty}\frac{\pi(x)}{li(x)}=\lim_{x\rightarrow \infty}(\frac{\pi(x)}{\frac{x}{\log x}}\cdot \frac{\frac{x}{\log x}}{li(x)})=1\cdot \frac{1}{1}=1 ##.
Therefore, ## li(x)\sim \frac{x}{\log x} ## and the Prime Number Theorem can be expressed in the form ## \pi(x)\sim li(x) ##.
 
Physics news on Phys.org
Math100 said:
Homework Statement:: Prove that ## li(x)\sim \frac{x}{\log x} ##, using ## li(x)=\frac{x}{\log x}+\int_{2}^{x}\frac{dt}{\log^2 t}-\frac{2}{\log 2} ##. Deduce that the Prime Number Theorem can be expressed in the form ## \pi(x)\sim li(x) ##.
Relevant Equations:: None.

Proof:

Let ## f ## and ## g ## be functions such that ## f ## and ## g ## are asymptotically equivalent if
## \lim_{x\rightarrow \infty}\frac{f(x)}{g(x)}=1 ##.
The Fundamental Theorem of Calculus states that if ## F ## is a function defined for all ## x ## in ## [a, b] ## by
## F(x)=\int_{a}^{x}f(t)dt ##, then ## F'(x)=f(x) ## where ## F ## is an antiderivative of ## f ##.
Consider ## F(x)=\int_{2}^{x}\frac{dt}{\log^2 t} ##.
Then ## F'(x)=\frac{1}{\log^2 x} ##.
Observe that
\begin{align*}
&\frac{d}{dx}(\frac{x}{\log x})=\frac{\log x\frac{dx}{dx}-x\frac{d}{dx}(\log x)}{\log^2 x}\\
&=\frac{\log x-\frac{x}{x}}{\log^2 x}=\frac{\log x-1}{\log^2 x}.\\
\end{align*}
Now we will show that ## \lim_{x\rightarrow \infty}\frac{li(x)}{\frac{x}{\log x}}=\lim_{x\rightarrow \infty}\frac{f(x)}{g(x)} ##.
Observe that ## \lim_{x\rightarrow \infty}(\frac{x}{\log x})=\frac{\infty}{\infty} ##.
By L'hopital's rule, we have that
## \lim_{x\rightarrow \infty}\frac{\frac{d}{dx}(x)}{\frac{d}{dx}(\log x)}=\lim_{x\rightarrow \infty}\frac{1}{\frac{1}{x}}=\lim_{x\rightarrow \infty}x=\infty ##.
This implies ## lim_{x\rightarrow \infty}li(x)=\lim_{x\rightarrow \infty}(\frac{x}{\log x}+\int_{2}^{x}\frac{dt}{\log^2 t}-\frac{2}{\log 2})=\infty ##,
so ## \lim_{x\rightarrow \infty}\frac{li(x)}{\frac{x}{\log x}}=\frac{\infty}{\infty} ##.
Applying L'Hopital's rule yields
\begin{align*}
&\lim_{x\rightarrow \infty}\frac{\frac{d}{dx}(li(x))}{\frac{d}{dx}(\frac{x}{\log x})}\\
&=\lim_{x\rightarrow \infty}\frac{\frac{d}{dx}(\frac{x}{\log x}+\int_{2}^{x}\frac{dt}{\log^2 t}-\frac{2}{\log 2})}{\frac{d}{dx}(\frac{x}{\log x})}\\
&=\lim_{x\rightarrow \infty}1+\frac{\frac{d}{dx}(\int_{2}^{x}\frac{dt}{\log^2 t}-\frac{2}{\log 2})}{\frac{d}{dx}(\frac{x}{\log x})}\\
&=\lim_{x\rightarrow \infty}1+\frac{\frac{1}{\log^2 x}}{\frac{\log x-1}{\log^2 x}}\\
&=\lim_{x\rightarrow \infty}1+\lim_{x\rightarrow \infty}\frac{1}{\log x-1}\\
&=1+0\\
&=1.\\
\end{align*}
Thus ## li(x)\sim \frac{x}{\log x} ##.
By the Prime Number Theorem, we have that ## \pi(x)\sim \frac{x}{\log x} ##.
Thus ## lim_{x\rightarrow \infty}\frac{\pi(x)}{li(x)}=\lim_{x\rightarrow \infty}(\frac{\pi(x)}{\frac{x}{\log x}}\cdot \frac{\frac{x}{\log x}}{li(x)})=1\cdot \frac{1}{1}=1 ##.
Therefore, ## li(x)\sim \frac{x}{\log x} ## and the Prime Number Theorem can be expressed in the form ## \pi(x)\sim li(x) ##.
You cannot calculate with infinity as if it was a number. You should delete everything between "Now we will show ..." until ##\frac{\infty }{\infty }.##

The last calculation (together with the derivative of ##x/\log(x)## from the beginning) is sufficient,
 
  • Like
Likes   Reactions: Math100
Wikipedia has a nice image about the difference between the curves:

PrimeNumberTheorem2.png


For more details, see:
https://www.physicsforums.com/insights/the-history-and-importance-of-the-riemann-hypothesis/
 
  • Informative
Likes   Reactions: Math100
fresh_42 said:
You cannot calculate with infinity as if it was a number. You should delete everything between "Now we will show ..." until ##\frac{\infty }{\infty }.##

The last calculation (together with the derivative of ##x/\log(x)## from the beginning) is sufficient,
Maybe I wrote too much.
 
  • Like
Likes   Reactions: fresh_42

Similar threads

  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
7
Views
2K
  • · Replies 14 ·
Replies
14
Views
4K
  • · Replies 25 ·
Replies
25
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 7 ·
Replies
7
Views
7K