Prove that ## li(x)\sim \frac{x}{\log x} ##.

  • Thread starter Thread starter Math100
  • Start date Start date
AI Thread Summary
The discussion revolves around proving that the logarithmic integral function, denoted as li(x), is asymptotically equivalent to x/log(x) as x approaches infinity. The proof utilizes the Fundamental Theorem of Calculus and L'Hôpital's rule to establish that the limit of the ratio of li(x) to x/log(x) equals 1. Additionally, it connects this result to the Prime Number Theorem, demonstrating that the number of primes less than x, represented by π(x), is also asymptotically equivalent to li(x). The conclusion emphasizes that both li(x) and π(x) can be expressed in the form of x/log(x) as x tends to infinity.
Math100
Messages
813
Reaction score
229
Homework Statement
Prove that ## li(x)\sim \frac{x}{\log x} ##, using ## li(x)=\frac{x}{\log x}+\int_{2}^{x}\frac{dt}{\log^2 t}-\frac{2}{\log 2} ##. Deduce that the Prime Number Theorem can be expressed in the form ## \pi(x)\sim li(x) ##.
Relevant Equations
None.
Proof:

Let ## f ## and ## g ## be functions such that ## f ## and ## g ## are asymptotically equivalent if
## \lim_{x\rightarrow \infty}\frac{f(x)}{g(x)}=1 ##.
The Fundamental Theorem of Calculus states that if ## F ## is a function defined for all ## x ## in ## [a, b] ## by
## F(x)=\int_{a}^{x}f(t)dt ##, then ## F'(x)=f(x) ## where ## F ## is an antiderivative of ## f ##.
Consider ## F(x)=\int_{2}^{x}\frac{dt}{\log^2 t} ##.
Then ## F'(x)=\frac{1}{\log^2 x} ##.
Observe that
\begin{align*}
&\frac{d}{dx}(\frac{x}{\log x})=\frac{\log x\frac{dx}{dx}-x\frac{d}{dx}(\log x)}{\log^2 x}\\
&=\frac{\log x-\frac{x}{x}}{\log^2 x}=\frac{\log x-1}{\log^2 x}.\\
\end{align*}
Now we will show that ## \lim_{x\rightarrow \infty}\frac{li(x)}{\frac{x}{\log x}}=\lim_{x\rightarrow \infty}\frac{f(x)}{g(x)} ##.
Observe that ## \lim_{x\rightarrow \infty}(\frac{x}{\log x})=\frac{\infty}{\infty} ##.
By L'hopital's rule, we have that
## \lim_{x\rightarrow \infty}\frac{\frac{d}{dx}(x)}{\frac{d}{dx}(\log x)}=\lim_{x\rightarrow \infty}\frac{1}{\frac{1}{x}}=\lim_{x\rightarrow \infty}x=\infty ##.
This implies ## lim_{x\rightarrow \infty}li(x)=\lim_{x\rightarrow \infty}(\frac{x}{\log x}+\int_{2}^{x}\frac{dt}{\log^2 t}-\frac{2}{\log 2})=\infty ##,
so ## \lim_{x\rightarrow \infty}\frac{li(x)}{\frac{x}{\log x}}=\frac{\infty}{\infty} ##.
Applying L'Hopital's rule yields
\begin{align*}
&\lim_{x\rightarrow \infty}\frac{\frac{d}{dx}(li(x))}{\frac{d}{dx}(\frac{x}{\log x})}\\
&=\lim_{x\rightarrow \infty}\frac{\frac{d}{dx}(\frac{x}{\log x}+\int_{2}^{x}\frac{dt}{\log^2 t}-\frac{2}{\log 2})}{\frac{d}{dx}(\frac{x}{\log x})}\\
&=\lim_{x\rightarrow \infty}1+\frac{\frac{d}{dx}(\int_{2}^{x}\frac{dt}{\log^2 t}-\frac{2}{\log 2})}{\frac{d}{dx}(\frac{x}{\log x})}\\
&=\lim_{x\rightarrow \infty}1+\frac{\frac{1}{\log^2 x}}{\frac{\log x-1}{\log^2 x}}\\
&=\lim_{x\rightarrow \infty}1+\lim_{x\rightarrow \infty}\frac{1}{\log x-1}\\
&=1+0\\
&=1.\\
\end{align*}
Thus ## li(x)\sim \frac{x}{\log x} ##.
By the Prime Number Theorem, we have that ## \pi(x)\sim \frac{x}{\log x} ##.
Thus ## lim_{x\rightarrow \infty}\frac{\pi(x)}{li(x)}=\lim_{x\rightarrow \infty}(\frac{\pi(x)}{\frac{x}{\log x}}\cdot \frac{\frac{x}{\log x}}{li(x)})=1\cdot \frac{1}{1}=1 ##.
Therefore, ## li(x)\sim \frac{x}{\log x} ## and the Prime Number Theorem can be expressed in the form ## \pi(x)\sim li(x) ##.
 
Physics news on Phys.org
Math100 said:
Homework Statement:: Prove that ## li(x)\sim \frac{x}{\log x} ##, using ## li(x)=\frac{x}{\log x}+\int_{2}^{x}\frac{dt}{\log^2 t}-\frac{2}{\log 2} ##. Deduce that the Prime Number Theorem can be expressed in the form ## \pi(x)\sim li(x) ##.
Relevant Equations:: None.

Proof:

Let ## f ## and ## g ## be functions such that ## f ## and ## g ## are asymptotically equivalent if
## \lim_{x\rightarrow \infty}\frac{f(x)}{g(x)}=1 ##.
The Fundamental Theorem of Calculus states that if ## F ## is a function defined for all ## x ## in ## [a, b] ## by
## F(x)=\int_{a}^{x}f(t)dt ##, then ## F'(x)=f(x) ## where ## F ## is an antiderivative of ## f ##.
Consider ## F(x)=\int_{2}^{x}\frac{dt}{\log^2 t} ##.
Then ## F'(x)=\frac{1}{\log^2 x} ##.
Observe that
\begin{align*}
&\frac{d}{dx}(\frac{x}{\log x})=\frac{\log x\frac{dx}{dx}-x\frac{d}{dx}(\log x)}{\log^2 x}\\
&=\frac{\log x-\frac{x}{x}}{\log^2 x}=\frac{\log x-1}{\log^2 x}.\\
\end{align*}
Now we will show that ## \lim_{x\rightarrow \infty}\frac{li(x)}{\frac{x}{\log x}}=\lim_{x\rightarrow \infty}\frac{f(x)}{g(x)} ##.
Observe that ## \lim_{x\rightarrow \infty}(\frac{x}{\log x})=\frac{\infty}{\infty} ##.
By L'hopital's rule, we have that
## \lim_{x\rightarrow \infty}\frac{\frac{d}{dx}(x)}{\frac{d}{dx}(\log x)}=\lim_{x\rightarrow \infty}\frac{1}{\frac{1}{x}}=\lim_{x\rightarrow \infty}x=\infty ##.
This implies ## lim_{x\rightarrow \infty}li(x)=\lim_{x\rightarrow \infty}(\frac{x}{\log x}+\int_{2}^{x}\frac{dt}{\log^2 t}-\frac{2}{\log 2})=\infty ##,
so ## \lim_{x\rightarrow \infty}\frac{li(x)}{\frac{x}{\log x}}=\frac{\infty}{\infty} ##.
Applying L'Hopital's rule yields
\begin{align*}
&\lim_{x\rightarrow \infty}\frac{\frac{d}{dx}(li(x))}{\frac{d}{dx}(\frac{x}{\log x})}\\
&=\lim_{x\rightarrow \infty}\frac{\frac{d}{dx}(\frac{x}{\log x}+\int_{2}^{x}\frac{dt}{\log^2 t}-\frac{2}{\log 2})}{\frac{d}{dx}(\frac{x}{\log x})}\\
&=\lim_{x\rightarrow \infty}1+\frac{\frac{d}{dx}(\int_{2}^{x}\frac{dt}{\log^2 t}-\frac{2}{\log 2})}{\frac{d}{dx}(\frac{x}{\log x})}\\
&=\lim_{x\rightarrow \infty}1+\frac{\frac{1}{\log^2 x}}{\frac{\log x-1}{\log^2 x}}\\
&=\lim_{x\rightarrow \infty}1+\lim_{x\rightarrow \infty}\frac{1}{\log x-1}\\
&=1+0\\
&=1.\\
\end{align*}
Thus ## li(x)\sim \frac{x}{\log x} ##.
By the Prime Number Theorem, we have that ## \pi(x)\sim \frac{x}{\log x} ##.
Thus ## lim_{x\rightarrow \infty}\frac{\pi(x)}{li(x)}=\lim_{x\rightarrow \infty}(\frac{\pi(x)}{\frac{x}{\log x}}\cdot \frac{\frac{x}{\log x}}{li(x)})=1\cdot \frac{1}{1}=1 ##.
Therefore, ## li(x)\sim \frac{x}{\log x} ## and the Prime Number Theorem can be expressed in the form ## \pi(x)\sim li(x) ##.
You cannot calculate with infinity as if it was a number. You should delete everything between "Now we will show ..." until ##\frac{\infty }{\infty }.##

The last calculation (together with the derivative of ##x/\log(x)## from the beginning) is sufficient,
 
Wikipedia has a nice image about the difference between the curves:

PrimeNumberTheorem2.png


For more details, see:
https://www.physicsforums.com/insights/the-history-and-importance-of-the-riemann-hypothesis/
 
fresh_42 said:
You cannot calculate with infinity as if it was a number. You should delete everything between "Now we will show ..." until ##\frac{\infty }{\infty }.##

The last calculation (together with the derivative of ##x/\log(x)## from the beginning) is sufficient,
Maybe I wrote too much.
 
I tried to combine those 2 formulas but it didn't work. I tried using another case where there are 2 red balls and 2 blue balls only so when combining the formula I got ##\frac{(4-1)!}{2!2!}=\frac{3}{2}## which does not make sense. Is there any formula to calculate cyclic permutation of identical objects or I have to do it by listing all the possibilities? Thanks
Essentially I just have this problem that I'm stuck on, on a sheet about complex numbers: Show that, for ##|r|<1,## $$1+r\cos(x)+r^2\cos(2x)+r^3\cos(3x)...=\frac{1-r\cos(x)}{1-2r\cos(x)+r^2}$$ My first thought was to express it as a geometric series, where the real part of the sum of the series would be the series you see above: $$1+re^{ix}+r^2e^{2ix}+r^3e^{3ix}...$$ The sum of this series is just: $$\frac{(re^{ix})^n-1}{re^{ix} - 1}$$ I'm having some trouble trying to figure out what to...
Back
Top