- #1
Portuga
- 56
- 6
Homework Statement
prove that
[tex]
\lim_{x\rightarrow 0} \sin \left( \frac{1}{x} \right)
[/tex] doesn't exist.
Homework Equations
[tex]
\lim_{x\rightarrow0}\sin\left(\frac{1}{x}\right)=\lim_{u\rightarrow\infty}\sin u
[/tex]
The Attempt at a Solution
My strategy to solve this problem is to make [itex] u \rightarrow \infty [/itex] through different paths and show that the limits are different.
So, first one is [itex] a_{u}=\frac{\pi}{2}+2\pi u,\,u\in\mathbb{N} [/itex]. Second one is [itex]
b_{u}=u\pi,\,u\in\mathbb{N}[/itex].
Both these have the same behavior as [itex] u \rightarrow \infty [/itex]:
[tex]
\lim_{u\rightarrow\infty}a_{u}=\lim_{u\rightarrow\infty}b_{u}=\infty.
[/tex]
For with first one,
[tex]
\begin{aligned}\lim_{u\rightarrow\infty}\sin a_{u} & =\lim_{u\rightarrow\infty}\sin\left(\frac{\pi}{2}+2\pi u\right)\\ & =\lim_{u\rightarrow\infty}\sin\left(\frac{\pi}{2}\right)\cos2\pi u+\sin2\pi u\cos\left(\frac{\pi}{2}\right)\\ & =\lim_{u\rightarrow\infty}\sin\left(\frac{\pi}{2}\right)\cos2\pi u+\lim_{u\rightarrow\infty}\sin2\pi u\cos\left(\frac{\pi}{2}\right)\\ & =\lim_{u\rightarrow\infty}\cos2\pi u+\lim_{u\rightarrow\infty}\sin2\pi u\cos\left(\frac{\pi}{2}\right). \end{aligned}
[/tex]
The limit [itex]
\lim_{u\rightarrow\infty}\sin2\pi u\cos\left(\frac{\pi}{2}\right)
[/itex] tends to 0, as [itex]
\cos\left(\frac{\pi}{2}\right)
[/itex] tends to 0, and [itex]
\sin2\pi u
[/itex] is limited both upper and lower bound.
Therefore, [tex]
\lim_{u\rightarrow\infty}\sin a_{u}=1.
[/tex]
Now, [tex]
\lim_{u\rightarrow\infty}\sin b_{u}=\lim_{u\rightarrow\infty}\sin u\pi=0,
[/tex] as, [itex] \forall u, u\pi [/itex] is an multiple of [itex]\pi[/itex], which [itex] \sin [/itex] is null.
Then, [tex]
\lim_{u\rightarrow\infty}\sin b_{u}=0.
[/tex]
Because of these two different results for different paths, it's true that [tex]
\nexists\lim_{x\rightarrow0}\sin\frac{1}{x}.
[/tex]
Am I correct?
Thanks in advance!
Last edited: