Prove the 2nd axiom of mathematical logic using the Deduction Theorem

AI Thread Summary
The discussion focuses on proving the second axiom of mathematical logic, which states that if P implies (Q implies R), then if P implies Q, it follows that P implies R. Participants emphasize the importance of using the Deduction Theorem for this proof. There's a consensus that axioms are foundational and should precede theorems in logical reasoning. Some users express skepticism about attempting the proof in reverse, suggesting that progress should be shared for constructive feedback. The conversation highlights the structured approach necessary for logical proofs in mathematical contexts.
solakis1
Messages
407
Reaction score
0
prove:
The 2nd axiom of mathematical logic

2) $((P\implies(Q\implies R))\implies((P\implies Q)\implies(P\implies R))$

By using only the deduction theorem
 
Mathematics news on Phys.org
Axioms come before theorems so there isn't much point, but if you still want to do this backwards then show us what progress you have made.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Back
Top