Prove the given complex number problem

chwala
Gold Member
Messages
2,827
Reaction score
415
Homework Statement
Prove that, for any complex number ##z##, ##zz^{*}= \bigl(\Re (z))^2+\bigl(\Im (z))^2##
Relevant Equations
Complex numbers
This is pretty straightforward,
Let ##z=a+bi##
## \bigl(\Re (z))=a, \bigl(\Im (z))=b##
##zz^*=(a+bi)(a-bi)=a^2+b^2 =\bigl(\Re (z))^2+\bigl(\Im (z))^2##
Any other approach? this are pretty simple questions ...all the same its good to explore different perspective on the same...
 
Last edited:
Physics news on Phys.org
https://www.math-linux.com/latex-26/faq/latex-faq/article/latex-real-part-symbol

$$zz^{*}= \bigl(\Re(z)\bigr )^2+ \bigl(\Im (z)\bigr )^2\qquad {\sf {or}}
\qquad \bigl (\operatorname{Re}(z)\bigr )^2+ \bigl(\operatorname{Im} (z)\bigr )^2$$but I have no trouble admitting both are ugly. Fortunately this doesn't occur all that often. Maybe \Bigr etc is a little better: $$zz^{*}= \Bigl(\Re(z)\Bigr)^2+ \Bigl(\Im (z)\Bigr )^2\qquad {\sf {or}}
\qquad \Bigl (\operatorname{Re}(z)\Bigr )^2+ \Bigl(\operatorname{Im} (z)\Bigr )^2$$

##\ ##
 
Last edited:
Thanks Bvu, i have greatly learned latex from you...will take note...
 
chwala said:
Any other approach?
$${\sf z} = |{\sf z}| e^ {i\arg {\sf z} }, \quad {\sf z^*} = |{\sf z}| e^ {-i\arg {\sf z} } \Rightarrow {\sf zz^*} = |{\sf z}|^2 $$but: does that pass muster ?
I guess not :cry: ...

##\ ##
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top