Prove the given complex number problem

chwala
Gold Member
Messages
2,825
Reaction score
413
Homework Statement
Prove that, for any complex number ##z##, ##zz^{*}= \bigl(\Re (z))^2+\bigl(\Im (z))^2##
Relevant Equations
Complex numbers
This is pretty straightforward,
Let ##z=a+bi##
## \bigl(\Re (z))=a, \bigl(\Im (z))=b##
##zz^*=(a+bi)(a-bi)=a^2+b^2 =\bigl(\Re (z))^2+\bigl(\Im (z))^2##
Any other approach? this are pretty simple questions ...all the same its good to explore different perspective on the same...
 
Last edited:
Physics news on Phys.org
https://www.math-linux.com/latex-26/faq/latex-faq/article/latex-real-part-symbol

$$zz^{*}= \bigl(\Re(z)\bigr )^2+ \bigl(\Im (z)\bigr )^2\qquad {\sf {or}}
\qquad \bigl (\operatorname{Re}(z)\bigr )^2+ \bigl(\operatorname{Im} (z)\bigr )^2$$but I have no trouble admitting both are ugly. Fortunately this doesn't occur all that often. Maybe \Bigr etc is a little better: $$zz^{*}= \Bigl(\Re(z)\Bigr)^2+ \Bigl(\Im (z)\Bigr )^2\qquad {\sf {or}}
\qquad \Bigl (\operatorname{Re}(z)\Bigr )^2+ \Bigl(\operatorname{Im} (z)\Bigr )^2$$

##\ ##
 
Last edited:
Thanks Bvu, i have greatly learned latex from you...will take note...
 
chwala said:
Any other approach?
$${\sf z} = |{\sf z}| e^ {i\arg {\sf z} }, \quad {\sf z^*} = |{\sf z}| e^ {-i\arg {\sf z} } \Rightarrow {\sf zz^*} = |{\sf z}|^2 $$but: does that pass muster ?
I guess not :cry: ...

##\ ##
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top