Prove that ##c^2+d^2=1## in the problem involving complex numbers

Well, if you can remember that ##z = |z|e^{i\theta}##, then $$zw = |z|e^{i\theta}|w|e^{i\phi} = |z||w|e^{i(\theta + \phi)}$$From which is follows that ##|zw| = |z||w|## and ##\arg(zw) = \arg(z) +...f
  • #1

chwala

Gold Member
2,370
303
Homework Statement
Let ##z=a+bi##, where ##a## and ##b## are real numbers. If Let ##z=a+bi##, where ##a## and ##b## are real numbers. If $$\frac {z}{z^*}=c+di$$, where ##c## and ##d## are real, prove that ##c^2+d^2=1##
Relevant Equations
Complex numbers
Easy questions, just a lot of computation...

$$\frac {z}{z^*}=\frac {a+bi}{a-bi} ×\frac {a+bi}{a+bi}$$
$$c+di=\frac {a^2-b^2}{a^2+b^2}+\frac {2abi}{a^2+b^2}$$
$$⇒c^2= \frac {a^4-2a^2b^2+b^4}{(a^2+b^2)^2}$$
$$⇒d^2= \frac {4a^2b^2}{(a^2+b^2)^2}$$
Therefore, $$c^2+d^2= \frac {a^4-2a^2b^2+b^4}{(a^2+b^2)^2}+\frac {4a^2b^2}{(a^2+b^2)^2}=1$$

A different approach would be appreciated...
 
Last edited:
  • #2
If you have already proven |zw|=|z||w| then you can use that fact here to make the proof very short.
 
  • #3
A different approach would be appreciated...
... and definitely needed.

What about using the properties of the modulus of a complex number?
 
  • #4
but one will still need to do some computation on the rhs ...i.e if
##z=c+di##, then ##⇒|z|=(c+di)^2##
 
  • #5
but one will still need to do some computation on the rhs ...i.e if
##z=c+di##, then ##⇒|z|=(c+di)^2##
That's not right. If ##z = a +bi##, then$$|z|^2 = a^2 + b^2$$And, in fact, we also have$$|z|^2 = zz^*$$
 
  • #6
That's not right. If ##z = a +bi##, then$$|z|^2 = a^2 + b^2$$And, in fact, we also have$$|z|^2 = zz^*$$
Noted, i made a mistake there...
 
  • #7
Are you aware that you can write a complex number ##z=a+ib## as ##|z|e^{i\theta}##, where ##\tan\theta=b/a##? If so, it's really easy.
 
  • #8
Are you aware that you can write a complex number ##z=a+ib## as ##|z|e^{i\theta}##, where ##\tan\theta=b/a##? If so, it's really easy.
Not as easy as it is using the modulus!
 
  • #9
Are you aware that you can write a complex number ##z=a+ib## as ##|z|e^{i\theta}##, where ##\tan\theta=b/a##? If so, it's really easy.
I need to refresh on this...yes i am aware...are you talking of the Euler form of equation...something like
$$z=x+iy= r{cos θ+i sin θ}$$...applying ##z^n## where necessary?
 
  • #10
I need to refresh on this...yes i am aware...you're talking of the euler form something like
$$z=x+iy= r{cos θ+i sin θ}$$...applying ##z^n## where necessary?
Yeah, but if you express it the way I did with the complex exponential and note that ##z^*=|z|e^{-i\theta}##, it should be a one-liner. This approach implies the result about moduli that I think @PeroK is advocating using directly.

Edit: by the way, you've got a LaTeX bug - you tried to use {} instead of (). Braces aren't rendered, though, so your ##r## appears to be multiplying only the ##\cos## instead of the ##\cos## and the ##i\sin##.
 
Last edited:
  • #11
That's not right. If ##z = a +bi##, then$$|z|^2 = a^2 + b^2$$And, in fact, we also have$$|z|^2 = zz^*$$
Ok going with this thinking, we shall get; $$\frac{|z|}{|z^{*}|}=\frac{|a^2+b^2|}{|a^2-b^2|}=\frac{a^2+b^2}{a^2+b^2}=1=c^2+d^2$$
 
  • #12
If ##z/z^* = c+di##, then ##(z/z^*)^* = z^*/z = c - di##. It follows that
$$
1= \frac{z}{z^*} \frac{z^*}{z} = (c+di)(c-di) = c^2 + d^2.
$$
 
  • Like
Likes PhDeezNutz and chwala
  • #13
If ##z/z^* = c+di##, then ##(z/z^*)^* = z^*/z = c - di##. It follows that
$$
1= \frac{z}{z^*} \frac{z^*}{z} = (c+di)(c-di) = c^2 + d^2.
$$
Nice one mate:biggrin:...this was straightforward and directly to the point, ...i need to refresh on the complex number properties...
 
Last edited:
  • #14
Are you aware that you can write a complex number ##z=a+ib## as ##|z|e^{i\theta}##, where ##\tan\theta=b/a##? If so, it's really easy.
How would your solution look like, you're transforming to polar form of equation? How will you treat the argument? Cheers...
 
  • #15
How would your solution look like, you're transforming to polar form of equation? How will you treat the argument? Cheers...
$$\frac{z}{z^*}=\frac{|z|e^{i\theta}}{|z|e^{-i\theta}}=e^{2i\theta}$$That last expression is a complex number with unit modulus written in complex exponential form and must be equal to ##c+id##. Hence ##|c+id|=1##.
 
  • Like
Likes PhDeezNutz and chwala
  • #16
[tex]c^2+d^2=1[/tex]
means
[tex]|\frac{z}{z^*}|=1[/tex]
which is obviously true.
 
  • Like
Likes PeroK and chwala
  • #17
My solution would be simply:
$$c^2 + d^2 = \big |\frac z {z^*}\big |^2 = \frac{|z|^2}{|z^*|^2} = 1$$I can't see that the polar form is needed.
 
  • #18
I can't see that the polar form is needed.
Depends whether you remember that ##|ab|=|a||b|## off the top of your head or not. It's one of those things I never quite recall for some reason, so going via ##ab=|ab|\exp(i(\theta_a+\theta_b))## is easier for me.
 
  • #19
Depends whether you remember that ##|ab|=|a||b|## off the top of your head or not. It's one of those things I never quite recall for some reason, so going via ##ab=|ab|\exp(i(\theta_a+\theta_b))## is easier for me.
Well, if you can remember that ##z = |z|e^{i\theta}##, then $$zw = |z|e^{i\theta}|w|e^{i\phi} = |z||w|e^{i(\theta + \phi)}$$From which is follows that ##|zw| = |z||w|## and ##\arg(zw) = \arg(z) + \arg(w)##.
 
  • Like
Likes chwala and Ibix
  • #20
Another way. Let ##z_0=c+id##. We have,
$$
z=z^{*}z_0
$$
Taking the complex conjugate of both sides of the equation,
$$
z^{*}=zz_0^{*}
$$
substituting ##z^{*}## in the first equation
$$
z=zz_0 z_0^{*}
$$
$$
z_0 z_0^{*}=1=c^2+d^2
$$
 
  • #21
Depends whether you remember that ##|ab|=|a||b|## off the top of your head or not.
You do not need to remember that. Nor that ##c^2 + d^2## is the norm squared of ##c+di##. All you need to know is how complex conjugation works on multiplications. See #12. Both #17 and #20 are rather minor variations of #12.
 

Suggested for: Prove that ##c^2+d^2=1## in the problem involving complex numbers

Back
Top