- #1

chwala

Gold Member

- 2,706

- 370

- Homework Statement
- Prove that, for any complex number ##z##, ##zz^{*}= \bigl(\Re (z))^2+\bigl(\Im (z))^2##

- Relevant Equations
- Complex numbers

This is pretty straightforward,

Let ##z=a+bi##

## \bigl(\Re (z))=a, \bigl(\Im (z))=b##

##zz^*=(a+bi)(a-bi)=a^2+b^2 =\bigl(\Re (z))^2+\bigl(\Im (z))^2##

Any other approach? this are pretty simple questions ...all the same its good to explore different perspective on the same...

Let ##z=a+bi##

## \bigl(\Re (z))=a, \bigl(\Im (z))=b##

##zz^*=(a+bi)(a-bi)=a^2+b^2 =\bigl(\Re (z))^2+\bigl(\Im (z))^2##

Any other approach? this are pretty simple questions ...all the same its good to explore different perspective on the same...

Last edited: