MHB Prove the minimum is greater than or equal to 8

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Minimum
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Hello MHB!

Let $a,\,b$ and $c$ be positive real such that $(a+2)(b+2)(c+2)=27$. Prove that $(a^2+1)(b^2+1)(c^2+1)\ge 8$.

I've recently encountered the above really hard and good inequality problem that I failed to prove, I've been trying it for days but ALL my attempts proved futile.:mad: I feel completely defeated, and hope to get some useful hints to solve it from MHB...

Thanks in advance for the help!
 
Mathematics news on Phys.org
anemone said:
Hello MHB!
I've recently encountered the above really hard and good inequality problem that I failed to prove, I've been trying it for days but ALL my attempts proved futile.:mad: I feel completely defeated, and hope to get some useful hints to solve it from MHB...

Thanks in advance for the help!

Because of cyclic symmetry we can see that extremum is ar a = b= c
this gives $(a+2)^3 = 27$ or a = 1 so a = b = c = 1

now $(a^2+1)(b^2+1)(c^2 +1) = 8$

taking a = b = 2 we get c = 4.75 and $(a^2+1)(b^2+1)(c^2+1) = 5 * 5 * (4.75^2+1) > 8$ and hence the result
 
Thanks kaliprasad...that advice does help!:)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top