MHB Prove The Product Is Greater Than 5

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Product
AI Thread Summary
The discussion focuses on proving the inequality $$\left(1+\frac{1}{\sin x}\right)\left(1+\frac{1}{\cos x}\right) > 5$$ for the interval $$0 < x < \frac{\pi}{2}$$. Participants share their solutions and methods for tackling the problem. The contributors express appreciation for each other's efforts in solving the inequality. The conversation highlights collaboration and the exchange of mathematical ideas. The goal is to establish the validity of the inequality within the specified range.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove $$\left(1+\frac{1}{\sin x}\right)\left(1+\frac{1}{\cos x}\right)\gt 5$$ for $$0\lt x \lt \frac{\pi}{2}$$.
 
Mathematics news on Phys.org
Hi anemone,

Here is my solution.

I'll prove the stronger statement

$$\left(1 + \frac{1}{\sin x}\right)\left(1 + \frac{1}{\cos x}\right) \ge 3 + 2\sqrt{2} \qquad (0 < x < \frac{\pi}{2})$$

This inequality is stronger than the proposed one since $3 + 2\sqrt{2} > 3 +2 = 5$. Expand the product on the left-hand side of the inequality to get

$$1 + \frac{1}{\sin x} + \frac{1}{\cos x} + \frac{1}{\sin x\cos x}\tag{*}$$By the arithmetic-harmonic mean inequality,

$$\frac{1}{\sin x} + \frac{1}{\cos x} \ge \frac{4}{\sin x + \cos x} = \frac{4}{\sqrt{2}\sin(x + \pi/4)} \le \frac{4}{\sqrt{2}} = 2\sqrt{2}$$

Since

$$\frac{1}{\sin x\cos x} = \frac{2}{\sin 2x} \ge 2$$

we deduce that the expression (*) is at least $1 + 2\sqrt{2} + 2$, or $3 + 2\sqrt{2}$. Note that equality holds if and only if $x = \pi/4$.
 
anemone said:
Prove $$\left(1+\frac{1}{\sin x}\right)\left(1+\frac{1}{\cos x}\right)\gt 5$$ for $$0\lt x \lt \frac{\pi}{2}$$.

My solution:

Let the objective function be:

$$f(x,y)=(1+\csc(x))(1+\csc(y))$$

Subject to the constraint:

$$g(x,y)=x+y-\frac{\pi}{2}=0$$ where $$0<x,y<\frac{\pi}{2}$$

Now, by cyclic symmetry, we find the critical point is at:

$$(x,y)=\left(\frac{\pi}{4},\frac{\pi}{4}\right)$$

And we also find:

$$f\left(\frac{\pi}{4},\frac{\pi}{4}\right)=\left(1+\sqrt{2}\right)^2=3+2\sqrt{2}$$

Now, if we pick another point on the constraint, such as:

$$(x,y)=\left(\frac{\pi}{6},\frac{\pi}{3}\right)$$

We then find

$$f\left(\frac{\pi}{6},\frac{\pi}{3}\right)=(1+2)\left(1+\frac{2}{\sqrt{3}}\right)=\sqrt{3}\left(2+\sqrt{3}\right)=3+2\sqrt{3}>3+2\sqrt{2}$$

And so we conclude that:

$$f_{\min}=3+2\sqrt{2}>5$$
 
anemone said:
Prove $$\left(1+\frac{1}{\sin x}\right)\left(1+\frac{1}{\cos x}\right)\gt 5---(1)$$ for $$0\lt x \lt \frac{\pi}{2}$$.
my solution:
using $AP\geq GP$
$(1)> 4{\sqrt {\dfrac{2}{(sin\,2x)}}}>4\sqrt 2>5$
 
Hi Euge, MarkFL and Albert!

Very good job to the three of you! And thanks for participating!
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Back
Top