MHB Prove the statements : Vectors/Matrices

  • Thread starter Thread starter mathmari
  • Start date Start date
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Let $1\leq n\in \mathbb{N}$.

  • Prove that for all $v\in \mathbb{R}^n$ it holds that $v+0_{\mathbb{R}^n}=v=0_{\mathbb{R}^n}+v$.
  • Prove that for all $\lambda\in \mathbb{R}$ and $v,w\in \mathbb{R}$ it holds that $\lambda (v+w)=\lambda v+\lambda w$.
  • Let $M_2(\mathbb{R}):=\left \{\begin{pmatrix}a & b \\ c & d\end{pmatrix}\mid a, b, c, d\in \mathbb{R}\right \}$ the set of all $2\times 2$-matrices over $\mathbb{R}$. We define also the multiplication on that set as \begin{equation*}\begin{pmatrix}a & b \\ c & d\end{pmatrix}\cdot \begin{pmatrix}a' & b' \\ c' & d'\end{pmatrix}=\begin{pmatrix}aa'+bc' & ab'+bd' \\ ca'+dc' & cb'+dd'\end{pmatrix}\end{equation*}
    1. Show that the multiplication over $M_2(\mathbb{R})$ is associative.
    2. Is the multiplication over $M_2(\mathbb{R})$ commutative?
    3. Is there a neutral element in respect of the multiplication over $M_2(\mathbb{R})$ ?
I have done the following:

  • How can we prove this property? (Wondering)
    $$$$
  • Could you give me also a hint for this one? (Wondering)
    $$$$
    1. Let $A=\begin{pmatrix}a & b \\ c & d\end{pmatrix}, \ B=\begin{pmatrix}e & f \\ g & h\end{pmatrix}, \ C=\begin{pmatrix}i & j \\ k & \ell\end{pmatrix}$.

      Then we have the following: \begin{align*}(A\cdot B)\cdot C&=\left (\begin{pmatrix}a & b \\ c & d\end{pmatrix}\cdot \begin{pmatrix}e & f \\ g & h\end{pmatrix}\right )\cdot \begin{pmatrix}i & j \\ k & \ell\end{pmatrix}= \begin{pmatrix}ae+bg & af+bh \\ ce+dg & cf+dh\end{pmatrix}\cdot \begin{pmatrix}i & j \\ k & \ell\end{pmatrix}\\ & = \begin{pmatrix}(ae+bg)i+(af+bh)k & (ae+bg)j+(af+bh)\ell \\ (ce+dg)i+(cf+dh)k & (ce+dg)j+(cf+dh)\ell\end{pmatrix}\\ & = \begin{pmatrix}aei+bgi+afk+bhk & aej+bgj+af\ell+bh\ell \\ cei+dgi+cfk+dhk & cej+dgj+cf\ell+dh\ell\end{pmatrix}\end{align*}

      \begin{align*}A\cdot (B\cdot C)&=\begin{pmatrix}a & b \\ c & d\end{pmatrix}\cdot\left ( \begin{pmatrix}e & f \\ g & h\end{pmatrix}\cdot \begin{pmatrix}i & j \\ k & \ell\end{pmatrix}\right )= \begin{pmatrix}a & b \\ c & d\end{pmatrix}\cdot\begin{pmatrix}ei+fk & ej+f\ell \\ gi+hk & gj+h\ell\end{pmatrix} \\ & = \begin{pmatrix}a(ei+fk)+b(gi+hk) & a(ej+f\ell)+b(gj+h\ell) \\ c(ei+fk)+d(gi+hk) & c(ej+f\ell)+d(gj+h\ell)\end{pmatrix} \\ & = \begin{pmatrix}aei+afk+bgi+bhk & aej+af\ell+bgj+bh\ell \\ cei+cfk+dgi+dhk & cej+cf\ell+dgj+dh\ell\end{pmatrix}\\ & = \begin{pmatrix}aei+bgi+afk+bhk & aej+bgj+af\ell+bh\ell \\ cei+dgi+cfk+dhk & cej+dgj+cf\ell+dh\ell\end{pmatrix}\end{align*}

      The results are the same. Therefore it holds that $(A\cdot B)\cdot C=A\cdot (B\cdot C)$ which means the multiplication over $M_2(\mathbb{R})$ is associative.
    2. Let $A=\begin{pmatrix}a & b \\ c & d\end{pmatrix}, \ B=\begin{pmatrix}e & f \\ g & h\end{pmatrix}$.

      Then we have the following: \begin{equation*}A\cdot B=\begin{pmatrix}a & b \\ c & d\end{pmatrix}\cdot \begin{pmatrix}e & f \\ g & h\end{pmatrix}=\begin{pmatrix}ae+bg & af+bh \\ ce+dg & cf+dh\end{pmatrix} \end{equation*}

      Then we have the following: \begin{equation*}B\cdot A=\begin{pmatrix}e & f \\ g & h\end{pmatrix}\cdot \begin{pmatrix}a & b \\ c & d\end{pmatrix}=\begin{pmatrix}ea+fc & eb+fd \\ ga+hc & gb+hd\end{pmatrix} \end{equation*}

      We see that $A\cdot B\neq B\cdot A$, which means that the multiplication over $M_2(\mathbb{R})$ is not commutative.
    3. The neutral element in respect of the multiplication over $M_2(\mathbb{R})$ is the identity matrix \begin{equation*}I_2=\begin{pmatrix}1 & 0 \\ 0 & 1\end{pmatrix}\end{equation*}
    Is what I have done correct and complete? (Wondering)
 
Physics news on Phys.org
Hey mathmari!

What is the definition of addition in $\mathbb R^n$? (Wondering)
It should be defined in terms of addition on $\mathbb R$.
And of scalar multiplication?

The rest looks all good to me. (Smile)
 
Klaas van Aarsen said:
What is the definition of addition in $\mathbb R^n$? (Wondering)
It should be defined in terms of addition on $\mathbb R$.
And of scalar multiplication?

We define addition in $\mathbb{R}^n$ componentwise: $x+y=(x_1, \ldots , x_n)+(y_1, \ldots , y_n)=(x_1+y_1, \ldots , x_n+y_n)$.
We have that $0_{\mathbb{R}^n}=(0,\ldots , 0)$.

So we have that \begin{equation*} v+0_{\mathbb{R}^n}=(v_1, \ldots , v_n)+(0,\ldots , 0)=(v_1+0, \ldots , v_n+0)=(v_1, \ldots , v_n)=v\end{equation*}
Similarily, we get \begin{equation*}0_{\mathbb{R}^n}+v=(0,\ldots , 0)+(v_1, \ldots , v_n)=(0+v_1, \ldots , 0+v_n)=(v_1, \ldots , v_n)=v\end{equation*}

Therefore, it holds that $v+0_{\mathbb{R}^n}=v=0_{\mathbb{R}^n}+v$.
The scalar multiplication is defined as follows:
$\lambda x=\lambda (x_1, \ldots , x_n)=(\lambda x_1, \ldots , \lambda x_n)$.

Then we get \begin{align*}\lambda (v+w)&=\lambda \left ((v_1, \ldots , v_n)+(w_1, \ldots , w_n)\right )=\lambda \left ((v_1+w_1, \ldots , v_n+w_n)\right ) \\ & =(\lambda(v_1+w_1), \ldots , \lambda(v_n+w_n))=(\lambda v_1+\lambda w_1, \ldots , \lambda v_n+\lambda w_n) \\ & =(\lambda v_1, \ldots , \lambda v_n)+(\lambda w_1, \ldots , \lambda w_n) =\lambda( v_1, \ldots , v_n)+ \lambda (w_1, \ldots , w_n) \\ & =\lambda v+\lambda w\end{align*} Are these proofs correct and complete? (Wondering)
 
Yep. All correct. (Nod)
 
Klaas van Aarsen said:
Yep. All correct. (Nod)

Great! Thank you! (Sun)
 
mathmari said:
We see that $A\cdot B\neq B\cdot A$
For which values of $a,\ldots,h$? For all? For some? Then for which exactly? Expressions $a^{3}+b^{3}+c^{3}-3abc$ and $(a+b+c)(a^{2} +b^{2}+c^{2}-ab-bc-ca)$ also look quite differently, yet they are equal.
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 52 ·
2
Replies
52
Views
3K
  • · Replies 17 ·
Replies
17
Views
2K
Replies
8
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K