MHB Prove the sum of a² and d² is equal the sum of b² and c².

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Sum
Click For Summary
The discussion centers on proving that for real numbers a, b, c, and d, the equation a² + d² = b² + c² holds under the condition a + b√2 + c√3 + 2d ≥ √10(a² + b² + c² + d²). Participants share their approaches to the proof, with one member acknowledging a previous error in their solution and expressing intent to clarify their reasoning. The conversation highlights the importance of rigorous proof and correction in mathematical discourse. The hint suggests that further exploration of the problem could lead to a valid solution. The thread emphasizes collaborative problem-solving in mathematics.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $a,\,b,\,c,\,d\in \mathbb{R}$ with condition that $a+b\sqrt{2}+c\sqrt{3}+2d\ge \sqrt{10(a^2+b^2+c^2+d^2)}$.

Prove that $a^2+d^2=b^2+c^2$.
 
Mathematics news on Phys.org
anemone said:
Let $a,\,b,\,c,\,d\in \mathbb{R}$ with condition that $a+b\sqrt{2}+c\sqrt{3}+2d\ge \sqrt{10(a^2+b^2+c^2+d^2)}$.

Prove that $a^2+d^2=b^2+c^2$.

Hint:

Cauchy-Schwarz Inequality
 
anemone said:
Hint:

Cauchy-Schwarz Inequality

by Cauchy-Schawartz in equality we have

$(a^2+b^2+c^2+d^2)(1^2 + \sqrt2^2+ \sqrt3^2+2^2)>=(a+b\sqrt{2}+c\sqrt{3}+2d)^2$

Or $10(a^2 + b^2 + c^2+ d^2)>=(a+b\sqrt{2}+c\sqrt{3}+2d)^2$

Or $\sqrt{10(a^2 + b^2+ c^2+d^2)}>=(a+b\sqrt{2}+c\sqrt{3}+2d)$

from given condition and above we have
$\sqrt{10(a^2 + b^2+c^2+d^2)}=(a+b\sqrt{2}+c\sqrt{3}+2d)^2$

when

$\frac{a}{1}= \frac{b}{\sqrt2}=\frac{c}{\sqrt3}= \frac{d}{2}= k (say)$
So $a = k, b^2= 2k^2,c^2=3k^2,d=2k$ and hence $a^2+d^2=b^2+c^2$
 
kaliprasad said:
by Cauchy-Schawartz in equality we have

$(a^2+b^2+c^2+d^2)(1^2 + \sqrt2^2+ \sqrt3^2+2^2)>=(a+b\sqrt{2}+c\sqrt{3}+2d)^2$

Or $10(a^2 + b^2 + c^2+ d^2)>=(a+b\sqrt{2}+c\sqrt{3}+2d)^2$

Or $\sqrt{10(a^2 + b^2+ c^2+d^2)}>=(a+b\sqrt{2}+c\sqrt{3}+2d)$

from given condition and above we have
$\sqrt{10(a^2 + b^2+c^2+d^2)}=(a+b\sqrt{2}+c\sqrt{3}+2d)^2$

when

$\frac{a}{1}= \frac{b}{\sqrt2}=\frac{c}{\sqrt3}= \frac{d}{2}= k (say)$
So $a = k, b^2= 2k^2,c^2=3k^2,d=2k$ and hence $a^2+d^2=b^2+c^2$

Thanks kaliprasad for participating and the nice solution, I solved it a bit different than yours:

By applying the Cauchy Schwarz inequality to the LHS of the given inequality, we get:

$a+b\sqrt{2}+c\sqrt{3}+2d\le \sqrt{10}\sqrt{(a^2+b^2+c^2+d^2)}$

From $\sqrt{10}\sqrt{(a^2+b^2+c^2+d^2)}\le a+b\sqrt{2}+c\sqrt{3}+2d\le \sqrt{10}\sqrt{(a^2+b^2+c^2+d^2)}$, we can conclude that

$a+b\sqrt{2}+c\sqrt{3}+2d=\sqrt{10(a^2+b^2+c^2+d^2)}$.

Using Cauchy Schwarz inequality again, separately, on both $a+2d$ and $b\sqrt{2}+c\sqrt{3}$, we get:

$a+2d≤\sqrt{5(a^2+d^2)}$ and $b\sqrt{2}+c\sqrt{3}\le \sqrt{5(b^2+c^2)}$.

Adding them up and replacing $a+b\sqrt{2}+c\sqrt{3}+2d$ by $\sqrt{10(a^2+b^2+c^2+d^2)}$, we end up getting:

$\sqrt{a^2+d^2}+\sqrt{b^2+c^2}\le 0$, which is true iff $a^2+d^2=b^2+c^2$. (Q. E. D.)
 
anemone said:
Thanks kaliprasad for participating and the nice solution, I solved it a bit different than yours:

By applying the Cauchy Schwarz inequality to the LHS of the given inequality, we get:

$a+b\sqrt{2}+c\sqrt{3}+2d\le \sqrt{10}\sqrt{(a^2+b^2+c^2+d^2)}$

From $\sqrt{10}\sqrt{(a^2+b^2+c^2+d^2)}\le a+b\sqrt{2}+c\sqrt{3}+2d\le \sqrt{10}\sqrt{(a^2+b^2+c^2+d^2)}$, we can conclude that

$a+b\sqrt{2}+c\sqrt{3}+2d=\sqrt{10(a^2+b^2+c^2+d^2)}$.

Using Cauchy Schwarz inequality again, separately, on both $a+2d$ and $b\sqrt{2}+c\sqrt{3}$, we get:

$a+2d≤\sqrt{5(a^2+d^2)}$ and $b\sqrt{2}+c\sqrt{3}\le \sqrt{5(b^2+c^2)}$.

Adding them up and replacing $a+b\sqrt{2}+c\sqrt{3}+2d$ by $\sqrt{10(a^2+b^2+c^2+d^2)}$, we end up getting:

$\sqrt{a^2+d^2}+\sqrt{b^2+c^2}\le 0$, which is true iff $a^2+d^2=b^2+c^2$. (Q. E. D.)

last line is in error as $\sqrt{a^2+d^2}+\sqrt{b^2+c^2}\le 0$ => a=b=c=d = 0 but for other values also it is true
 
Last edited:
kaliprasad said:
last line is in error as $\sqrt{a^2+d^2}+\sqrt{b^2+c^2}\le 0$ => a=b=c=d = 0 but for other values also it is true

Argh...sorry kaliprasad, last night I wasn't feeling okay and therefore the solution that I posted (with typo) in a hurry didn't quite hold water.

I therefore want to give the reasoning that I've "in my mind" that would definitely work, to amend the incomplete solution I posted yesterday:

By applying the Cauchy Schwarz inequality to the LHS of the given inequality, we get:

$a+b\sqrt{2}+c\sqrt{3}+2d\le \sqrt{10}\sqrt{(a^2+b^2+c^2+d^2)}$

From $\sqrt{10}\sqrt{(a^2+b^2+c^2+d^2)}\le a+b\sqrt{2}+c\sqrt{3}+2d\le \sqrt{10}\sqrt{(a^2+b^2+c^2+d^2)}$, we can conclude that

$a+b\sqrt{2}+c\sqrt{3}+2d=\sqrt{10(a^2+b^2+c^2+d^2)}$.

Using Cauchy Schwarz inequality again, separately, on both $a+2d$ and $b\sqrt{2}+c\sqrt{3}$, we get:

$a+2d≤\sqrt{5(a^2+d^2)}$ and $b\sqrt{2}+c\sqrt{3}\le \sqrt{5(b^2+c^2)}$.

Adding them up and replacing $a+b\sqrt{2}+c\sqrt{3}+2d$ by $\sqrt{10(a^2+b^2+c^2+d^2)}$, we end up getting:

$\sqrt{10(a^2+b^2+c^2+d^2)}\le \sqrt{5(a^2+d^2)}+\sqrt{5(b^2+c^2)}$

$\sqrt{2(a^2+b^2+c^2+d^2)}\le \sqrt{a^2+d^2}+\sqrt{b^2+c^2}$

Squaring both sides gives

$2(a^2+b^2+c^2+d^2)\le a^2+d^2+2\sqrt{a^2+d^2}\sqrt{b^2+c^2}+b^2+c^2$

$a^2+d^2-2\sqrt{a^2+d^2}\sqrt{b^2+c^2}+b^2+c^2\le 0$

$(\sqrt{a^2+d^2}-\sqrt{b^2+c^2})^2\le 0$, which is true iff $a^2+d^2=b^2+c^2$. (Q. E. D.)
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
901
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
2
Views
1K