Prove the sum of a² and d² is equal the sum of b² and c².

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Sum
Click For Summary

Discussion Overview

The discussion revolves around proving the equation \(a^2 + d^2 = b^2 + c^2\) under the condition that \(a + b\sqrt{2} + c\sqrt{3} + 2d \ge \sqrt{10(a^2 + b^2 + c^2 + d^2)}\). The scope includes mathematical reasoning and proof techniques.

Discussion Character

  • Mathematical reasoning

Main Points Raised

  • Post 1 presents the problem statement and the condition for real numbers \(a, b, c, d\).
  • Post 2 reiterates the problem statement and condition, suggesting a proof is needed.
  • Post 4 acknowledges a participant's contribution and mentions a different approach to the solution.
  • Post 5 also thanks the same participant and notes a different solution method.
  • Post 6 expresses a correction regarding a previous solution, indicating that it contained a typo and that the author has a new reasoning they believe will work.

Areas of Agreement / Disagreement

Participants express differing approaches to the problem, with some acknowledging previous contributions while also indicating they have alternative methods. There is no consensus on a single solution or method at this time.

Contextual Notes

Some posts indicate potential errors in earlier solutions, but the specifics of these errors and their implications remain unresolved.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $a,\,b,\,c,\,d\in \mathbb{R}$ with condition that $a+b\sqrt{2}+c\sqrt{3}+2d\ge \sqrt{10(a^2+b^2+c^2+d^2)}$.

Prove that $a^2+d^2=b^2+c^2$.
 
Mathematics news on Phys.org
anemone said:
Let $a,\,b,\,c,\,d\in \mathbb{R}$ with condition that $a+b\sqrt{2}+c\sqrt{3}+2d\ge \sqrt{10(a^2+b^2+c^2+d^2)}$.

Prove that $a^2+d^2=b^2+c^2$.

Hint:

Cauchy-Schwarz Inequality
 
anemone said:
Hint:

Cauchy-Schwarz Inequality

by Cauchy-Schawartz in equality we have

$(a^2+b^2+c^2+d^2)(1^2 + \sqrt2^2+ \sqrt3^2+2^2)>=(a+b\sqrt{2}+c\sqrt{3}+2d)^2$

Or $10(a^2 + b^2 + c^2+ d^2)>=(a+b\sqrt{2}+c\sqrt{3}+2d)^2$

Or $\sqrt{10(a^2 + b^2+ c^2+d^2)}>=(a+b\sqrt{2}+c\sqrt{3}+2d)$

from given condition and above we have
$\sqrt{10(a^2 + b^2+c^2+d^2)}=(a+b\sqrt{2}+c\sqrt{3}+2d)^2$

when

$\frac{a}{1}= \frac{b}{\sqrt2}=\frac{c}{\sqrt3}= \frac{d}{2}= k (say)$
So $a = k, b^2= 2k^2,c^2=3k^2,d=2k$ and hence $a^2+d^2=b^2+c^2$
 
kaliprasad said:
by Cauchy-Schawartz in equality we have

$(a^2+b^2+c^2+d^2)(1^2 + \sqrt2^2+ \sqrt3^2+2^2)>=(a+b\sqrt{2}+c\sqrt{3}+2d)^2$

Or $10(a^2 + b^2 + c^2+ d^2)>=(a+b\sqrt{2}+c\sqrt{3}+2d)^2$

Or $\sqrt{10(a^2 + b^2+ c^2+d^2)}>=(a+b\sqrt{2}+c\sqrt{3}+2d)$

from given condition and above we have
$\sqrt{10(a^2 + b^2+c^2+d^2)}=(a+b\sqrt{2}+c\sqrt{3}+2d)^2$

when

$\frac{a}{1}= \frac{b}{\sqrt2}=\frac{c}{\sqrt3}= \frac{d}{2}= k (say)$
So $a = k, b^2= 2k^2,c^2=3k^2,d=2k$ and hence $a^2+d^2=b^2+c^2$

Thanks kaliprasad for participating and the nice solution, I solved it a bit different than yours:

By applying the Cauchy Schwarz inequality to the LHS of the given inequality, we get:

$a+b\sqrt{2}+c\sqrt{3}+2d\le \sqrt{10}\sqrt{(a^2+b^2+c^2+d^2)}$

From $\sqrt{10}\sqrt{(a^2+b^2+c^2+d^2)}\le a+b\sqrt{2}+c\sqrt{3}+2d\le \sqrt{10}\sqrt{(a^2+b^2+c^2+d^2)}$, we can conclude that

$a+b\sqrt{2}+c\sqrt{3}+2d=\sqrt{10(a^2+b^2+c^2+d^2)}$.

Using Cauchy Schwarz inequality again, separately, on both $a+2d$ and $b\sqrt{2}+c\sqrt{3}$, we get:

$a+2d≤\sqrt{5(a^2+d^2)}$ and $b\sqrt{2}+c\sqrt{3}\le \sqrt{5(b^2+c^2)}$.

Adding them up and replacing $a+b\sqrt{2}+c\sqrt{3}+2d$ by $\sqrt{10(a^2+b^2+c^2+d^2)}$, we end up getting:

$\sqrt{a^2+d^2}+\sqrt{b^2+c^2}\le 0$, which is true iff $a^2+d^2=b^2+c^2$. (Q. E. D.)
 
anemone said:
Thanks kaliprasad for participating and the nice solution, I solved it a bit different than yours:

By applying the Cauchy Schwarz inequality to the LHS of the given inequality, we get:

$a+b\sqrt{2}+c\sqrt{3}+2d\le \sqrt{10}\sqrt{(a^2+b^2+c^2+d^2)}$

From $\sqrt{10}\sqrt{(a^2+b^2+c^2+d^2)}\le a+b\sqrt{2}+c\sqrt{3}+2d\le \sqrt{10}\sqrt{(a^2+b^2+c^2+d^2)}$, we can conclude that

$a+b\sqrt{2}+c\sqrt{3}+2d=\sqrt{10(a^2+b^2+c^2+d^2)}$.

Using Cauchy Schwarz inequality again, separately, on both $a+2d$ and $b\sqrt{2}+c\sqrt{3}$, we get:

$a+2d≤\sqrt{5(a^2+d^2)}$ and $b\sqrt{2}+c\sqrt{3}\le \sqrt{5(b^2+c^2)}$.

Adding them up and replacing $a+b\sqrt{2}+c\sqrt{3}+2d$ by $\sqrt{10(a^2+b^2+c^2+d^2)}$, we end up getting:

$\sqrt{a^2+d^2}+\sqrt{b^2+c^2}\le 0$, which is true iff $a^2+d^2=b^2+c^2$. (Q. E. D.)

last line is in error as $\sqrt{a^2+d^2}+\sqrt{b^2+c^2}\le 0$ => a=b=c=d = 0 but for other values also it is true
 
Last edited:
kaliprasad said:
last line is in error as $\sqrt{a^2+d^2}+\sqrt{b^2+c^2}\le 0$ => a=b=c=d = 0 but for other values also it is true

Argh...sorry kaliprasad, last night I wasn't feeling okay and therefore the solution that I posted (with typo) in a hurry didn't quite hold water.

I therefore want to give the reasoning that I've "in my mind" that would definitely work, to amend the incomplete solution I posted yesterday:

By applying the Cauchy Schwarz inequality to the LHS of the given inequality, we get:

$a+b\sqrt{2}+c\sqrt{3}+2d\le \sqrt{10}\sqrt{(a^2+b^2+c^2+d^2)}$

From $\sqrt{10}\sqrt{(a^2+b^2+c^2+d^2)}\le a+b\sqrt{2}+c\sqrt{3}+2d\le \sqrt{10}\sqrt{(a^2+b^2+c^2+d^2)}$, we can conclude that

$a+b\sqrt{2}+c\sqrt{3}+2d=\sqrt{10(a^2+b^2+c^2+d^2)}$.

Using Cauchy Schwarz inequality again, separately, on both $a+2d$ and $b\sqrt{2}+c\sqrt{3}$, we get:

$a+2d≤\sqrt{5(a^2+d^2)}$ and $b\sqrt{2}+c\sqrt{3}\le \sqrt{5(b^2+c^2)}$.

Adding them up and replacing $a+b\sqrt{2}+c\sqrt{3}+2d$ by $\sqrt{10(a^2+b^2+c^2+d^2)}$, we end up getting:

$\sqrt{10(a^2+b^2+c^2+d^2)}\le \sqrt{5(a^2+d^2)}+\sqrt{5(b^2+c^2)}$

$\sqrt{2(a^2+b^2+c^2+d^2)}\le \sqrt{a^2+d^2}+\sqrt{b^2+c^2}$

Squaring both sides gives

$2(a^2+b^2+c^2+d^2)\le a^2+d^2+2\sqrt{a^2+d^2}\sqrt{b^2+c^2}+b^2+c^2$

$a^2+d^2-2\sqrt{a^2+d^2}\sqrt{b^2+c^2}+b^2+c^2\le 0$

$(\sqrt{a^2+d^2}-\sqrt{b^2+c^2})^2\le 0$, which is true iff $a^2+d^2=b^2+c^2$. (Q. E. D.)
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
968
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 0 ·
Replies
0
Views
619
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
2
Views
1K