Prove this variation: If a+b ∝ a-b, prove that a^2+b^2 ∝ ab

Click For Summary
SUMMARY

The discussion centers on proving the statement that if \( a + b \propto a - b \), then \( a^2 + b^2 \propto ab \). Participants derive equations based on the proportionality definitions, leading to the conclusion that \( k_2 = \frac{2k_1^2 + 2}{k_1^2 - 1} \) confirms the proportionality of \( a^2 + b^2 \) to \( ab \). However, some contributors argue against the validity of the original claim, presenting counterexamples and emphasizing the need for clarity in the problem statement. The consensus indicates that the proof relies on the assumption of non-zero integers for \( a \) and \( b \).

PREREQUISITES
  • Understanding of proportionality in mathematics
  • Familiarity with algebraic manipulation and equations
  • Knowledge of basic algebraic identities and properties
  • Experience with variable relationships in mathematical proofs
NEXT STEPS
  • Study the concept of proportionality in algebraic expressions
  • Learn about algebraic identities and their applications in proofs
  • Explore counterexamples in mathematical proofs to strengthen understanding
  • Investigate the implications of integer constraints in algebraic equations
USEFUL FOR

Mathematics students, educators, and anyone interested in algebraic proofs and the properties of proportional relationships in equations.

RChristenk
Messages
73
Reaction score
9
Homework Statement
If ##a+b \varpropto a-b ##, prove that ##a^2+b^2 \varpropto ab##
Relevant Equations
Basic fractions and algebra
##a+b \varpropto a-b## means ##a+b = k_1(a-b)##

##(a+b)^2=k_1^2(a-b)^2##

##a^2+b^2+2ab=a^2k_1^2+b^2k_1^2-2abk_1^2##

##2ab(1+k_1^2)=a^2(k_1^2-1)+b^2(k_1^2-1)##

##2ab(k_1^2+1)=(a^2+b^2)(k_1^2-1)##

##a^2+b^2=ab(\dfrac{2k_1^2+2}{k_1^2-1})##

Since ##a^2+b^2 \varpropto ab## means ##a^2+b^2=abk_2##, compared to what I got, I can say ##k_2 = \dfrac{2k_1^2+2}{k_1^2-1}##. Therefore ##a^2+b^2 \varpropto ab## has been proven. Is this a correct? Thanks.
 
Last edited by a moderator:
Physics news on Phys.org
##a = 3, b = 1 \ \Rightarrow \ (a+b) = 2(a -b)##

##a^2 + b^2 = 10, \ ab = 3##
 
  • Like
Likes MatinSAR and FactChecker
Have you stated the problem exactly and completely? Maybe I'm missing something but it seems false to me.
 
FactChecker said:
Have you stated the problem exactly and completely? Maybe I'm missing something but it seems false to me.
It's definitely false, given I provided a counterexample!
 
  • Like
Likes MatinSAR and FactChecker
RChristenk said:
Homework Statement: If ##a+b \varpropto a-b ##, prove that ##a^2+b^2 \varpropto ab##
Relevant Equations: Basic fractions and algebra

##a+b \varpropto a-b## means ##a+b = k_1(a-b)##
What seems to be missing in the problem statement here is the idea that ##a^2 + b^2## must be shown to be in the same proportion to ab as a + b is to a - b.

IOW, if a + b = k(a - b), then ##a^2 + b^2 = kab##.
 
Mark44 said:
What seems to be missing in the problem statement here is the idea that ##a^2 + b^2## must be shown to be in the same proportion to ab as a + b is to a - b.

IOW, if a + b = k(a - b), then ##a^2 + b^2 = kab##.
That doesn't seem possible.
 
PeroK said:
That doesn't seem possible.
I agree. My comment was about I believe what the intent of the problem was, taking into account your counterexample. As a very simple example of what I am talking about, show that if ##x \varpropto y## then ##2x \varpropto 2y##. In the two resulting equations, the same constant applies to both.

What the OP is doing is something like this:
Show that ##x \varpropto y \Rightarrow x^2 \varpropto y^2##.
##x \varpropto y \Rightarrow x = ky## for some nonzero k
##x = ky \Rightarrow x^2 = k^2y^2 \Rightarrow x^2 = K y^2 \Rightarrow x^2 \varpropto y^2##

But if x = 4 and y = 2, then x = 2y, but ##x^2 = 16 \ne 8 = 2y^2##.
x and y aren't in the same proportion as ##x^2## and ##y^2##.
 
The question just states if ##a+b \varpropto a-b##, prove that ##a^2+b^2 \varpropto ab##.

I think the constants are different. So ## a+b = k_1(a-b)## and ##a^2+b^2 = k_2ab##.

##\Rightarrow (a+b)^2=k_1^2(a-b)^2##

##\Rightarrow a^2+2ab+b^2=a^2k_1^2-2abk_1^2+b^2k_1^2##

Now using ##a^2+b^2 = k_2ab## and replacing the left side of the above equation, get:

##\Rightarrow k_2ab+2ab=a^2k_1^2-2abk_1^2+b^2k_1^2##

##\Rightarrow k_2ab+2ab+2abk_1^2=(a^2+b^2)k_1^2##

##\Rightarrow ab(k_2+2+2k_1^2)=(a^2+b^2)k_1^2##

##\Rightarrow a^2+b^2 = ab\dfrac{(2k_1^2+k_2+2)}{k_1^2}##

So since ##\dfrac{(2k_1^2+k_2+2)}{k_1^2}## is a new constant of variation, ##a^2+b^2 \varpropto ab## is proven. That's just what I'm thinking.
 
RChristenk said:
The question just states if ##a+b \varpropto a-b##, prove that ##a^2+b^2 \varpropto ab##.

I think the constants are different. So ## a+b = k_1(a-b)## and ##a^2+b^2 = k_2ab##.

##\Rightarrow (a+b)^2=k_1^2(a-b)^2##

##\Rightarrow a^2+2ab+b^2=a^2k_1^2-2abk_1^2+b^2k_1^2##

Now using ##a^2+b^2 = k_2ab## and replacing the left side of the above equation, get:

##\Rightarrow k_2ab+2ab=a^2k_1^2-2abk_1^2+b^2k_1^2##

##\Rightarrow k_2ab+2ab+2abk_1^2=(a^2+b^2)k_1^2##

##\Rightarrow ab(k_2+2+2k_1^2)=(a^2+b^2)k_1^2##

##\Rightarrow a^2+b^2 = ab\dfrac{(2k_1^2+k_2+2)}{k_1^2}##

So since ##\dfrac{(2k_1^2+k_2+2)}{k_1^2}## is a new constant of variation, ##a^2+b^2 \varpropto ab## is proven. That's just what I'm thinking.
But this definition of "proportionality" is tautological. Any two quantities ##x## and ##y## are "proportional" (##y=kx##) if one is free to set ##k=y/x##. A proper proportionality requires that ##k## be independent of ##x,y##.
 
  • Like
Likes FactChecker and Mark44
  • #10
RChristenk said:
The question just states if ##a+b \varpropto a-b##, prove that ##a^2+b^2 \varpropto ab##.

I think the constants are different. So ## a+b = k_1(a-b)## and ##a^2+b^2 = k_2ab##.

##\Rightarrow (a+b)^2=k_1^2(a-b)^2##

##\Rightarrow a^2+2ab+b^2=a^2k_1^2-2abk_1^2+b^2k_1^2##

Now using ##a^2+b^2 = k_2ab## and replacing the left side of the above equation, get:

##\Rightarrow k_2ab+2ab=a^2k_1^2-2abk_1^2+b^2k_1^2##

##\Rightarrow k_2ab+2ab+2abk_1^2=(a^2+b^2)k_1^2##

##\Rightarrow ab(k_2+2+2k_1^2)=(a^2+b^2)k_1^2##

##\Rightarrow a^2+b^2 = ab\dfrac{(2k_1^2+k_2+2)}{k_1^2}##

So since ##\dfrac{(2k_1^2+k_2+2)}{k_1^2}## is a new constant of variation, ##a^2+b^2 \varpropto ab## is proven. That's just what I'm thinking.
Apart from when zero is involved, all real numbers are proportional to each other. This question only makes sense if the numbers involved are integers. In this case, if ##a, b \ne zero##, then:
$$a^a + b^2 = (\frac{a^2 + b^2}{ab})ab$$And there is no need to do any calculations. And nothing to prove.

Moreover, ##a + b = k(a - b)## is true for all real numbers ##a, b##. So, there is no "if" involved. It's only when ##a, b## and ##k## are integers that this condition makes sense.
 
  • Like
Likes FactChecker
  • #11
RChristenk said:
Homework Statement: If ##a+b \varpropto a-b ##, prove that ##a^2+b^2 \varpropto ab##
Perhaps ##a## and ##b## are supposed to be variables or parameters? Then ##a+b \varpropto a-b ## implies ##a \varpropto b ## and the result is trivial.

I originally assumed it was an integer equation. The question needs some context.
 
  • Like
Likes FactChecker
  • #12
PeroK said:
Perhaps ##a## and ##b## are supposed to be variables or parameters? Then ##a+b \varpropto a-b ## implies ##a \varpropto b ## and the result is trivial.
IMO, this is the answer that the problem had in mind.
 

Similar threads

  • · Replies 25 ·
Replies
25
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 40 ·
2
Replies
40
Views
4K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 39 ·
2
Replies
39
Views
12K
  • · Replies 11 ·
Replies
11
Views
2K
Replies
24
Views
4K