MHB Prove Triangle Inequality: $\sum_{cyc} \sin A$

AI Thread Summary
The discussion centers on proving the inequality for any triangle that states the sum of the sine of angles minus the product of the sine of angles is greater than or equal to the sum of the cubes of the sine of angles. The user expresses uncertainty about using the Rearrangement Inequality in their proof. They acknowledge the inappropriate practice of seeking partial solutions across different forums. A suggested solution is mentioned but not detailed in the discussion. The conversation highlights the complexities involved in proving trigonometric inequalities in triangle geometry.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Prove, that for any triangle:\[ \sum_{cyc}\sin A - \prod_{cyc}\sin A \ge \sum_{cyc}\sin^3 A \]
 
Mathematics news on Phys.org
I am so sorry, that I have posted a challenge, the solution of which, I am not certain. My problem is the use of the Rearrangement Inequality in the proof. I have asked in the forum: ”Pre-University Math/trigonometry” (http://mathhelpboards.com/trigonometry-12/usage-rearrangement-inequality-trigonometric-expression-20998.html#post95174), and I am aware, that it is bad policy to post a challenge in one forum and ask for a partial solution of it in another on the MHB site. Again, I am very sorry about this. It won´t happen again.

Here is the suggested solution:
Division by $\sin A \sin B \sin C$:

\[\sum_{cyc}\frac{1}{\sin B \sin C}-1 \geq \sum_{cyc}\frac{\sin^2 A}{\sin B \sin C}=\sum_{cyc}\frac{1- \cos^2 A}{\sin B \sin C} \\\\ \Rightarrow \sum_{cyc}\frac{\cos^2 A}{\sin B \sin C} \geq 1\]

Now, here comes the moment, where the Rearrangement Inequality is applied:

\[\sum_{cyc} \frac{\cos^2A}{\sin B\sin C}\geq \sum_{cyc} \frac{\cos B \cos C}{\sin B\sin C} =\sum_{cyc}\cot B \cot C = 1.\]
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top