MHB Proving a trigonometric identity

AI Thread Summary
The discussion focuses on proving the trigonometric identity involving the sum of cosines at specific angles. Participants suggest using angle addition formulas to express each cosine term in terms of known angles, specifically $\frac{\pi}{5}$ and $\frac{\pi}{7}$. There is a correction regarding the cosine of $\frac{18\pi}{35}$, emphasizing the importance of handling negative signs accurately. The next steps involve expanding the expressions, adding them, and factoring to equate coefficients. The conversation highlights the collaborative effort to clarify the proof process for the given identity.
maxkor
Messages
79
Reaction score
0
How prove $\cos\frac{8\pi}{35}+\cos\frac{12\pi}{35}+\cos\frac{18\pi}{35}=\frac{1}{2}\cdot\left(\cos\frac{\pi}{5}+\sqrt7\cdot\sin\frac{\pi}{5}\right)$?
 
Mathematics news on Phys.org
I have retitled the thread, since a title of "trig" in our Trigonometry forum tells our readers no more that they would already surmise. A good thread title briefly describes the question being asked.

Can you post what you have tried so far so our helpers know where you are stuck, and won't offer suggestions that you may have already tried?
 
$\cos \frac{12\pi}{35}=\cos( \frac{\pi}{5}+ \frac{\pi}{7})=\cos \frac{\pi}{5} \cdot \cos \frac{\pi}{7}-\sin \frac{\pi}{5} \cdot \sin \frac{\pi}{7}$$\cos \frac{8\pi}{35}=\cos( -\frac{\pi}{5}+ \frac{3\pi}{7})=\cos \frac{\pi}{5} \cdot \cos \frac{3\pi}{7}+\sin \frac{\pi}{5} \cdot \sin \frac{3\pi}{7}$$\cos \frac{18\pi}{35}=-\cos( \frac{\pi}{5}+ \frac{2\pi}{7})=-\cos \frac{\pi}{5} \cdot \cos \frac{2\pi}{7}+\sin \frac{\pi}{5} \cdot \sin \frac{2\pi}{7}$

what next?
 
I believe you want instead:

$$\cos\left(\frac{18\pi}{35}\right)=\cos\left(-\frac{\pi}{5}+\frac{5\pi}{7}\right)$$

Once you expand that like your first two equations, then add and factor on the two trig. expressions on the right side of the identity you are given to prove. Then you will have two identities resulting from equating the coefficients you must prove.
 
I see now I missed the negative sign, and indeed:

$$\cos\left(\frac{18\pi}{35}\right)=-\cos\left(\frac{17\pi}{35}\right)$$

So, add what you have, and factor as I suggested above. :D
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top