MHB Proving an Infinite Number of Integer Points on a Level Surface

Click For Summary
The function f(x,y) = x² + y² - 6xy + 8y defines a level surface where f(x,y) = 1, which contains infinitely many integer points (x,y). To prove this, one can start by rewriting the equation as (x - 3y)² = 8y² - 8y + 1. Finding integer values for y that make the right side a perfect square leads to integer solutions for x. Specifically, the equation can be transformed to n² = 2(2y - 1)² - 1, prompting the search for integer solutions that satisfy this condition. This approach suggests a connection to Pell's equation, indicating a pathway to proving the infinite integer solutions.
Elize88
Messages
1
Reaction score
0
Given is the function f: R2 -> R, with f(x,y)=x2+y2-6xy+8y.
The level surface f(x,y)=1 contains infinitely much points (x,y) where x and y
are integer.
How can I prove this?

I see that it is true with some examples, but how can I prove this.
Do I need to use the gradient? Or tangent planes? Or linear algebra?
 
Mathematics news on Phys.org
Elize88 said:
Given is the function f: R2 -> R, with f(x,y)=x2+y2-6xy+8y.
The level surface f(x,y)=1 contains infinitely much points (x,y) where x and y
are integer.
How can I prove this?

I see that it is true with some examples, but how can I prove this.
Do I need to use the gradient? Or tangent planes? Or linear algebra?
Hi Elize, and welcome to MHB!

You want to find integer solutions to the equation $x^2 - 6xy +y^2 + 8y = 1$. I would start by completing the square and writing the equation as $(x - 3y)^2 = 8y^2 - 8y + 1$. If you can find an integer value of $y$ making the right-hand side of that equation a perfect square, say $8y^2 - 8y + 1 = n^2$, then $(x - 3y)^2 = n^2$. So $x = 3y\pm n$, giving you two integer values of $x$ to solve your equation.

But $8y^2 - 8y + 1 = 2(2y-1)^2 - 1$. So we want to find integer solutions of the equation $n^2 = 2(2y-1)^2 - 1$. In other words, we are looking for squares that are equal to twice a square minus $1$. That should get you thinking about http://mathhelpboards.com/math-notes-49/pell-sequence-2905.html.
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 20 ·
Replies
20
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
14
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
Replies
66
Views
7K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K