MHB Proving an Infinite Number of Integer Points on a Level Surface

AI Thread Summary
The function f(x,y) = x² + y² - 6xy + 8y defines a level surface where f(x,y) = 1, which contains infinitely many integer points (x,y). To prove this, one can start by rewriting the equation as (x - 3y)² = 8y² - 8y + 1. Finding integer values for y that make the right side a perfect square leads to integer solutions for x. Specifically, the equation can be transformed to n² = 2(2y - 1)² - 1, prompting the search for integer solutions that satisfy this condition. This approach suggests a connection to Pell's equation, indicating a pathway to proving the infinite integer solutions.
Elize88
Messages
1
Reaction score
0
Given is the function f: R2 -> R, with f(x,y)=x2+y2-6xy+8y.
The level surface f(x,y)=1 contains infinitely much points (x,y) where x and y
are integer.
How can I prove this?

I see that it is true with some examples, but how can I prove this.
Do I need to use the gradient? Or tangent planes? Or linear algebra?
 
Mathematics news on Phys.org
Elize88 said:
Given is the function f: R2 -> R, with f(x,y)=x2+y2-6xy+8y.
The level surface f(x,y)=1 contains infinitely much points (x,y) where x and y
are integer.
How can I prove this?

I see that it is true with some examples, but how can I prove this.
Do I need to use the gradient? Or tangent planes? Or linear algebra?
Hi Elize, and welcome to MHB!

You want to find integer solutions to the equation $x^2 - 6xy +y^2 + 8y = 1$. I would start by completing the square and writing the equation as $(x - 3y)^2 = 8y^2 - 8y + 1$. If you can find an integer value of $y$ making the right-hand side of that equation a perfect square, say $8y^2 - 8y + 1 = n^2$, then $(x - 3y)^2 = n^2$. So $x = 3y\pm n$, giving you two integer values of $x$ to solve your equation.

But $8y^2 - 8y + 1 = 2(2y-1)^2 - 1$. So we want to find integer solutions of the equation $n^2 = 2(2y-1)^2 - 1$. In other words, we are looking for squares that are equal to twice a square minus $1$. That should get you thinking about http://mathhelpboards.com/math-notes-49/pell-sequence-2905.html.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top