MHB Proving $\angle ABC$ is Acute: Inside the Triangle $ABC$

  • Thread starter Thread starter maxkor
  • Start date Start date
  • Tags Tags
    Triangle
maxkor
Messages
79
Reaction score
0
Inside the triangle $ABC$ is point $P$, such that $BP > AP$ and $BP > CP$. Prove that $\angle ABC$ is acute.
 
Mathematics news on Phys.org
triineq.png

We are given that $x>y$ and $w>v$ therefore $x+w > y+v = \angle ABC$

Now $\angle CAB > x$ and $\angle ACB >w$ so $\angle CAB + \angle ACB > x+w > y+v = \angle ABC$

But $\angle CAB + \angle ACB = 180 - \angle ABC$ so $180 - \angle ABC > \angle ABC$ and $\angle ABC < 90$
 
I don't get it. Why doesn't the triangle below fit the ciiteria?

-Dan
 

Attachments

  • Screenshot (1).png
    Screenshot (1).png
    11.1 KB · Views: 133
@topsquark
Why doesn't the triangle fit the criteria?
This triangle fits the criteria.
 
maxkor said:
@topsquark
Why doesn't the triangle fit the criteria?
This triangle fits the criteria.
Aaahh! I was reading the problem wrong. I thought it was asking to show that the triangle ABC was acute. My bad.

-Dan
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
4
Views
1K
Replies
1
Views
1K
Replies
5
Views
2K
Replies
4
Views
1K
Replies
1
Views
1K
Replies
1
Views
987
Replies
2
Views
1K
Back
Top