MHB Proving angles are equal in a triangle in a circle.

markosheehan
Messages
133
Reaction score
0
View attachment 6094

hi can someone help me work this out. i think it has something to do with the exterior angle of a triangle is equal to the sum of the interior angles but i can't work it.
 

Attachments

  • WIN_20161016_19_27_26_Pro.jpg
    WIN_20161016_19_27_26_Pro.jpg
    58 KB · Views: 125
Mathematics news on Phys.org
Prove that $\angle CAB=\angle CBA$ by connecting these angles to measures of arcs using the inscribed angle theorem and its corollary about tangent lines.
 
how do you know the arcs AC and CB are the same
 
Last edited:
markosheehan said:
how do you know the arcs AC and CB are the same

Are you familiar with the Alternate Segment theorem, which states that

The angle between the tangent and chord at the point of contact is equal to the angle in the alternate segment.

View attachment 6099

So now do you see a similarity between the angle marked in blue in the above diagram & the angle marked in blue in your diagram.

$\therefore$ It can be said that $\angle CAT = \angle CBA$ using alternate segment theorem

Now what can be said about the triangle CBA using it's angles?
 

Attachments

  • 05c51d46693988123b38a8bb6e6e4ac08213509d.gif
    05c51d46693988123b38a8bb6e6e4ac08213509d.gif
    4 KB · Views: 110
It's isosceles
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top