MHB Proving Angles in Triangle ABC < 120° & Cos + Sin > -√3/3

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Angles Triangle
Click For Summary
In triangle ABC, it is established that all angles are less than 120°. The goal is to prove that the ratio of the sum of the cosines to the sum of the sines of the angles exceeds -√3/3. The relationship between the angles and their trigonometric functions is crucial in demonstrating this inequality. The proof involves applying trigonometric identities and properties of triangles. Ultimately, the conclusion affirms the inequality holds true under the given conditions.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
All the angles in triangle $ABC$ are less than $120^{\circ}$. Prove that

$\dfrac{\cos A+\cos B+\cos C}{\sin A+\sin B+\sin C}>-\dfrac{\sqrt{3}}{3}$.
 
Mathematics news on Phys.org
[TIKZ]
\coordinate[label=left:A] (A) at (0,0);
\coordinate[label=right:B] (B) at (6, 0);
\coordinate[label=above:C] (C) at (2.4,3);
\coordinate[label=above: $A_1$] ($A_1$) at (7,3);
\coordinate[label=below: $B_1$] ($B_1$) at (7.2,0);
\coordinate[label=below: $C_1$] ($C_1$) at (12,2);
\draw (A) -- (B)-- (C)-- (A);
\draw (7,3) -- (7.2,0)-- (12,2)-- (7,3);
[/TIKZ]
Consider the triangle $A_1B_1C_1$ where $\angle A_1=120^{\circ}-\angle A,\,\angle B_1=120^{\circ}-\angle B$ and $\angle C_1=120^{\circ}-\angle C$. The given condition guarantees the existence of such a triangle.

Applying the triangle inequality in triangle $A_1B_1C_1$ gives $B_1C_1+C_1A_1>A_1B_1$, i.e.

$\sin A_1+\sin B_1>\sin C_1$ by applying the law of sines to triangle $A_1B_1C_1$.

It follows that

$\sin (120^{\circ}-A)+\sin (120^{\circ}-B)>\sin (120^{\circ}-C)$ or

$\dfrac{\sqrt{3}}{2}(\cos A+\cos B+\cos C)+\dfrac{1}{2}(\sin A+\sin B+\sin C)>0$.

Taking into account that $a+b>c$ implies $\sin A+\sin B-\sin C>0$, the above inequality can be rewritten as

$\dfrac{\sqrt{3}}{2}\cdot \dfrac{\cos A+\cos B+\cos C}{\sin A+\sin B+\sin C}+\dfrac{1}{2}>0$, from which the conclusion follows.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K