MHB Proving $b^2-4ac \leq \frac{1}{8}$

  • Thread starter Thread starter Albert1
  • Start date Start date
Albert1
Messages
1,221
Reaction score
0
$b^2-4ac$ is a real root of equation :$ax^2+bx+c=0,\,\, (a\neq 0)$

prove :$ab\leq \dfrac {1}{8}$
 
Mathematics news on Phys.org
My solution:

Multiply the equation of $ax^2+bx+c=0$ by $4a$, we get:

$4a^2x^2+4abx+4ac=0$(*)

We're told that $b^2-4ac$ is a real root of the equation $ax^2+bx+c=0$, this tells us:

1. $4ac$ is a real number.

2. And we can, in this case, substitute $x=b^2-4ac$ into the equation (*), to get:

$4a^2(b^2-4ac)^2+4ab(b^2-4ac)+4ac=0$

Rewrite the above equation as another quadratic equation in terms of $4ac$, we see that we have:

$(4a^2)(4ac)^2-(8a^2b^2+4ab-1)(4ac)+(4a^2b^4+4ab^3)=0$

Since $4ac$ must be a real number, so the discriminant of the above equation must be greater than or equal to zero, thus this yields:

$(-(8a^2b^2+4ab-1))^2-4(4a^2)(4a^2b^4+4ab^3)\ge 0$

Expanding and simplify we get:

$-8ab+1\ge 0$

$\therefore ab\le \dfrac{1}{8}$
 
Last edited:
very good you got it !
here is my solution :
$ax^2+bx+c=0---(1)$
solution of (1):$x=\dfrac {-b\pm\sqrt {b^2-4ac}}{2a}=b^2-4ac$
let :$\sqrt{b^2-4ac}=y----(*)$
from(*) we create two new equtions
$2ay^2\pm y+b=0----(**)$
since (**) have real solutions
$\therefore 1-8ab\geq 0$, or $ab\leq \dfrac {1}{8}$
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top