MHB Proving BC=AE+BE in $\triangle ABC$

  • Thread starter Thread starter Albert1
  • Start date Start date
Albert1
Messages
1,221
Reaction score
0
$\triangle ABC,\, AB=AC ,\,\, \angle A=100^o$
the angle bisectoer of $\angle B $ intersects AC at point E
prove BC=AE+BE
 
Mathematics news on Phys.org
I could not draw the figure

but

in $\triangle$ ABE we have $\angle ABE = 20^o$

so $\frac{AE}{BE}= \frac{\sin \; 20^0}{\sin \; 100^0}$

similarly in

in $\triangle$ BCE we have $\angle BEC = 120^o$

so $\frac{BC}{BE}= \frac{\sin \; 120^0}{\sin \; 40^0}$

as we need to prove

BC = AE + BE

or $ \frac{BC}{BE} = 1 + \frac{AE}{BE}$

or $\frac{\sin \; 120^0}{\sin \; 40 ^0}= 1 + \frac{\sin \; 20^0}{\sin \; 100^0} $

we have RHS
= $1 + \frac{\sin \; 20^0}{\sin \; 100^0} $
= $ \frac{\sin \; 20^0+ \sin \; (100)^0} {\sin \; 100^0} $
= $ \frac{\sin \; 20^0+ \sin \; (100)^0} {\sin \; (180-100)^0} $
= $ \frac{\sin \; 20^0+ \sin \; (100)^0} {\sin \;80^0} $
= $ \frac{2 \sin \; 60^0 \cos \;40 ^0} {2 \cos \;40^0\sin \;40^0} $
=$ \frac{ \sin \; 60^0 } {sin \;40^0} $
= $ \frac{ \sin \;(180- 60)^0 } {sin \;40^0} $
= $ \frac{ \sin \;120^0 } {sin \;40^0} $
=LHS
 
Last edited:
from the diagram it is easy to see that :BC=AE+BE
View attachment 2536
 

Attachments

  • BC is the sum of AE and BE.JPG
    BC is the sum of AE and BE.JPG
    14.5 KB · Views: 92
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top