Proving continuity with sequences

  • Context: MHB 
  • Thread starter Thread starter Carla1985
  • Start date Start date
  • Tags Tags
    Continuity Sequences
Click For Summary
SUMMARY

The forum discussion centers on proving the continuity of the function f(x) = 10x² at x₀ = 0 using the sequence definition of continuity. Multiple users confirm that taking any sequence xₙ converging to 0 results in f(xₙ) = 10xₙ² converging to f(0) = 0, thus establishing continuity. The discussion emphasizes the equivalence of the sequence definition and the ε-δ definition of continuity, with users providing detailed proofs and justifications for their assertions.

PREREQUISITES
  • Understanding of continuity in real analysis
  • Familiarity with the ε-δ definition of limits
  • Knowledge of sequences and their convergence
  • Basic algebraic manipulation involving limits
NEXT STEPS
  • Study the ε-δ definition of continuity in detail
  • Learn about the equivalence of different definitions of continuity
  • Explore proofs involving sequences in real analysis
  • Investigate theorems related to limits of functions and their continuity
USEFUL FOR

Students and educators in mathematics, particularly those studying real analysis, as well as anyone interested in understanding the formal definitions and proofs of continuity for functions.

Carla1985
Messages
91
Reaction score
0
Could someone confirm that I've answered this question right please
\[

Prove\ using\ the\ sequence\ definition\ that\ f(x)=10x^2\ is\ continuous\ at\ x_0=0\\
I\ have:\ take\ any\ sequence\ x_n\ converging\ to\ 0.\ Then\ f(x_n)=10x_n^2\ converges\ to\ f(x_0)=10*0^2=0\ so\ it\ is\ continuous.\\
is\ that\ sufficient\ for\ the\ proof?

\]
Thankyou
 
Physics news on Phys.org
Carla1985 said:
Could someone confirm that I've answered this question right please
\[

Prove\ using\ the\ sequence\ definition\ that\ f(x)=10x^2\ is\ continuous\ at\ x_0=0\\
I\ have:\ take\ any\ sequence\ x_n\ converging\ to\ 0.\ Then\ f(x_n)=10x_n^2\ converges\ to\ f(x_0)=10*0^2=0\ so\ it\ is\ continuous.\\
is\ that\ sufficient\ for\ the\ proof?

\]
Thankyou

I'm not sure what you mean by the sequence definition (I have not done Real Analysis in a while) but to prove continuity here I would simply show that [math]\displaystyle \begin{align*} |x - 0 | < \delta \implies \left| 10x^2 - 0 \right| < \epsilon \end{align*}[/math].

Working on the second inequality we find

[math]\displaystyle \begin{align*} \left| 10x^2 - 0 \right| &< \epsilon \\ \left| 10x^2 \right| &< \epsilon \\ 10 |x| ^2 &< \epsilon \\ |x| ^2 &< \frac{\epsilon}{10} \\ |x| &< \sqrt{ \frac{\epsilon}{10} } \\ |x - 0| &< \sqrt{ \frac{\epsilon}{10} } \end{align*}[/math]

So let [math]\displaystyle \begin{align*} \delta = \sqrt{ \frac{\epsilon}{10} } \end{align*}[/math] and reverse the process to complete your proof.
 
Our continuity definition has two parts:

A function f : D → R, D ⊂ R is continuous at x ∈ D
if either of the following equivalent conditions holds:
(i) for every ε > 0 there exists δ = δ(ε) > 0 such that for y ∈ D
y−x|<δ implies |f(y)−f(x)|<ε;
(ii) for every sequence (xn)n∈N, xn ∈ D, converging to x ∈ D it follows that (f (xn ))n∈N converges to f (x), i.e. limn→∞ xn = x implies limn→∞ f(xn) = f(x)

I think for this question we have to use the second part as I've already done the ones using the first part :)
 
Carla1985 said:
Our continuity definition has two parts:

A function f : D → R, D ⊂ R is continuous at x ∈ D
if either of the following equivalent conditions holds:
(i) for every ε > 0 there exists δ = δ(ε) > 0 such that for y ∈ D
y−x|<δ implies |f(y)−f(x)|<ε;
(ii) for every sequence (xn)n∈N, xn ∈ D, converging to x ∈ D it follows that (f (xn ))n∈N converges to f (x), i.e. limn→∞ xn = x implies limn→∞ f(xn) = f(x)

I think for this question we have to use the second part as I've already done the ones using the first part :)


A well known theorem on sequences extablishes that $\lim_{n \rightarrow \infty} f(x_{n})= f(x_{0})$ if and only if $\lim_{ n \rightarrow \infty} x_{n}=x_{0}$ and f(x) is continuous in $x=x_{0}$...Kind regards

$\chi$ $\sigma$
 
Carla1985 said:
Could someone confirm that I've answered this question right please
\[

Prove\ using\ the\ sequence\ definition\ that\ f(x)=10x^2\ is\ continuous\ at\ x_0=0\\
I\ have:\ take\ any\ sequence\ x_n\ converging\ to\ 0.\ Then\ f(x_n)=10x_n^2\ converges\ to\ f(x_0)=10*0^2=0\ so\ it\ is\ continuous.\\
is\ that\ sufficient\ for\ the\ proof?

\]
Thankyou

Hello Carla! Let us try. We want to prove that the sequence $(f(x_n))$ converges to $f(0)$ for any sequence $(x_n)$ converging to $0$. Let $\varepsilon >0$. From the convergence of $(x_n)$ we know that there is a $N_0 \in \mathbb{N}$ such that for all $n \geq N_0$ we have that $|x_n - 0| < \varepsilon$.

Using our definitions, we know that $f(x_n) = 10x_n^2$ and $f(0) = 0$, therefore we have that $|f(x_n) - f(0)| = |10 x_n^2|$. We want to conclude that this is less than $\varepsilon$, so it is desirable to have $|x_n^2| < \frac{\varepsilon}{10}$ and $|x_n| < \frac{\sqrt{\varepsilon}}{\sqrt{10}}$.

I feel this is where we use the convergence of the sequence $(x_n)$. Since it converges, we can take a $N \in \mathbb{N}$ such that $|x_n| < \sqrt{ \frac{\varepsilon}{10} }$. This argument works because the convergence is for all $\varepsilon >0$, in particular this one. :)

Putting it all together: using the convergence of the sequence $(x_n)$, take $N \in \mathbb{N}$ such that $|x_n| < \sqrt{ \frac{\varepsilon}{10} }$. It follows that $$|f(x_n) - f(0)| = |10x_n^2| < 10 \cdot \left( \sqrt{ \frac{\varepsilon}{10} } \right) = \varepsilon,$$ therefore the sequence $(f(x_n))$ converges to $f(0)$ and the function $f$ is continuous at $0$. :D

I hope this helps.

Regards. (Wave)
 
Carla1985 said:
Could someone confirm that I've answered this question right please
\[

Prove\ using\ the\ sequence\ definition\ that\ f(x)=10x^2\ is\ continuous\ at\ x_0=0\\
I\ have:\ take\ any\ sequence\ x_n\ converging\ to\ 0.\ Then\ \boxed{f(x_n)=10x_n^2\ converges\ to\ f(x_0)=10*0^2=0}\ so\ it\ is\ continuous.\\
is\ that\ sufficient\ for\ the\ proof?

\]
Thankyou
Your proof is correct apart from giving some justification for the assertion that I have boxed. If you are allowed to quote theorems about limits of products then you should say that is what you are doing here. Otherwise you will need to use something like Fantini's argument in the previous comment.
 
chisigma said:
A well known theorem on sequences extablishes that $\lim_{n \rightarrow \infty} f(x_{n})= f(x_{0})$ if and only if $\lim_{ n \rightarrow \infty} x_{n}=x_{0}$ and f(x) is continuous in $x=x_{0}$...Kind regards

$\chi$ $\sigma$

Such a theorem does not exist
 
Yes it does. The conditions that $f$ is continuous, for every convergent sequence $x_n \to x_0$ we have that $f(x_n) \to f(x_0)$ and for all $\varepsilon >0$ exists $\delta >0$ such that $0 < |x -x_0| < \delta \implies |f(x) - f(x_0)| < \varepsilon$ are all equivalent in $\mathbb{R}$, or more generally, in metric spaces.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 13 ·
Replies
13
Views
9K
  • · Replies 20 ·
Replies
20
Views
4K
  • · Replies 7 ·
Replies
7
Views
4K