Proving Convergence of a Sequence with a Geometric Condition

  • Context: MHB 
  • Thread starter Thread starter evinda
  • Start date Start date
  • Tags Tags
    Sequence
Click For Summary

Discussion Overview

The discussion revolves around the convergence of a sequence defined by a geometric condition, specifically the inequality involving the differences of consecutive terms. Participants explore methods to demonstrate the convergence of the sequence based on the given condition.

Discussion Character

  • Exploratory
  • Mathematical reasoning
  • Homework-related

Main Points Raised

  • One participant asks for hints on proving the convergence of the sequence $(a_n)$ under the condition $|a_{n+2}-a_{n+1}| \leq \theta |a_{n+1}-a_n|$.
  • Another participant suggests using the triangle inequality and provides a detailed argument showing that the distance between terms can be bounded by a geometric series, leading to a conclusion about convergence.
  • A third participant reiterates the initial condition and proposes using the ratio test on the series formed by the differences $c_n = a_{n+1} - a_n$, indicating that it leads to a telescoping series.
  • One participant acknowledges the previous contributions and expresses gratitude for the insights provided.

Areas of Agreement / Disagreement

Participants present multiple approaches to the problem, with no consensus on a single method for proving convergence. The discussion remains open with various proposed techniques.

Contextual Notes

Some assumptions about the sequence and the implications of the geometric condition are not fully explored, leaving room for further clarification on the convergence proof.

evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Wave)

Let $0< \theta<1$ and a sequence $(a_n)$ for which it holds that $|a_{n+2}-a_{n+1}| \leq \theta |a_{n+1}-a_n|, n=1,2, \dots$.

Could you give me a hint how we could show that $(a_n)$ converges? :confused:
 
Physics news on Phys.org
Hi mathmari,

Note that by hypothesis $\lvert a_{n+2} - a_{n+1}\rvert \le \theta^n\lvert a_2 - a_1\rvert$ for all $n \ge 1$. By the triangle inequality, for all $n > m$,

$$\lvert a_n - a_m\rvert \le \lvert a_{m+1} - a_m\rvert + \lvert a_{m+2} - a_{m+1}\rvert + \cdots + \lvert a_n - a_{n-1}\rvert$$ and the latter expression is no greater than
$$(\theta^{m-1} + \theta^{m} + \cdots + \theta^{n-2})\lvert a_2 - a_1\rvert$$ Note $$\theta^{m-1} + \theta^{m} + \cdots + \theta^{n-2} \le \theta^{m-1} + \theta^{m} + \cdots = \frac{\theta^{m-1}}{1 - \theta}$$as $0 < \theta < 1$. Hence $$\lvert a_n - a_m\rvert \le \frac{\theta^{m-1}}{1-\theta}\lvert a_2 - a_1\rvert$$ for all $n > m$. Take it from here.
 
evinda said:
Let $0< \theta<1$ and a sequence $(a_n)$ for which it holds that $|a_{n+2}-a_{n+1}| \leq \theta |a_{n+1}-a_n|, n=1,2, \dots$.

Could you give me a hint how we could show that $(a_n)$ converges? :confused:
Let $c_n = a_{n+1} - a_n$. Use the ratio test to show that the series $\sum c_n$ converges. Then notice that $\sum c_n$ is a telescoping series with partial sums of the form $a_n - a_1$.

Edit. Sorry, I didn't see that Euge had got there first.
 
Euge said:
Hi mathmari,

Note that by hypothesis $\lvert a_{n+2} - a_{n+1}\rvert \le \theta^n\lvert a_2 - a_1\rvert$ for all $n \ge 1$. By the triangle inequality, for all $n > m$,

$$\lvert a_n - a_m\rvert \le \lvert a_{m+1} - a_m\rvert + \lvert a_{m+2} - a_{m+1}\rvert + \cdots + \lvert a_n - a_{n-1}\rvert$$ and the latter expression is no greater than
$$(\theta^{m-1} + \theta^{m} + \cdots + \theta^{n-2})\lvert a_2 - a_1\rvert$$ Note $$\theta^{m-1} + \theta^{m} + \cdots + \theta^{n-2} \le \theta^{m-1} + \theta^{m} + \cdots = \frac{\theta^{m-1}}{1 - \theta}$$as $0 < \theta < 1$. Hence $$\lvert a_n - a_m\rvert \le \frac{\theta^{m-1}}{1-\theta}\lvert a_2 - a_1\rvert$$ for all $n > m$. Take it from here.

I see... thanks a lot! (Smile)
 

Similar threads

Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
3
Views
2K
  • · Replies 44 ·
2
Replies
44
Views
7K