MHB Proving Determinant of Mirror-Image Identity Matrix

  • Thread starter Thread starter A.Magnus
  • Start date Start date
  • Tags Tags
    Determinant
A.Magnus
Messages
138
Reaction score
0
I was given this $n \times n$ matrix $A$ which is a mirror-image of identity matrix, ie., its non-main diagonal consists of entries of $1$, the rest of entries are $0$. I need to find out the determinant of $A$. Having experimented with $n = 2, 3, ...,$ I observed that for $n = 2 + 4k$ or $n = 3 + 4k$, then $det(A) = -1$. Otherwise $det(A) = 1$. But observation alone is not enough, I need to prove it to $n$. I was told that using induction will do it, but I don't know how to do it. Any helping hand would be very much appreciated, thank you before hand for your graciousness. ~MA
 
Physics news on Phys.org
Let $d_n$ be the determinant of the $n\times n$ matrix. Then $d_1=1$ and $d_{n+1}=(-1)^nd_n$. We want to prove that
\[
d_n=\begin{cases}1,&n\equiv0,1\pmod{4}\\-1,&n\equiv2,3\pmod{4}.\end{cases}
\]
Denote this statement by $P(n)$. First we check $P(1)$. Then we have to prove that for all $n$, $P(n)$ implies $P(n+1)$. Here we have to consider four cases that correspond to four possible remainders when $n$ is divided by 4.
 
Whenever you "swap" two rows of a determinant, you multiply it by -1. It should be easy to see that you can go from this "mirror-image" to the identity matrix by a series of swaps of two rows, starting with swapping the first and last rows, etc. If the number of rows is even, say n= 2k, there will be k such swaps. If the number of rows is odd, say n= 2k+ 1, there are still k such swaps since the middle row stays where it is.
 
HallsofIvy said:
Whenever you "swap" two rows of a determinant, you multiply it by -1. It should be easy to see that you can go from this "mirror-image" to the identity matrix by a series of swaps of two rows, starting with swapping the first and last rows, etc. If the number of rows is even, say n= 2k, there will be k such swaps. If the number of rows is odd, say n= 2k+ 1, there are still k such swaps since the middle row stays where it is.

Thank you! ~MA
 
Evgeny.Makarov said:
Let $d_n$ be the determinant of the $n\times n$ matrix. Then $d_1=1$ and $d_{n+1}=(-1)^nd_n$. We want to prove that
\[
d_n=\begin{cases}1,&n\equiv0,1\pmod{4}\\-1,&n\equiv2,3\pmod{4}.\end{cases}
\]
Denote this statement by $P(n)$. First we check $P(1)$. Then we have to prove that for all $n$, $P(n)$ implies $P(n+1)$. Here we have to consider four cases that correspond to four possible remainders when $n$ is divided by 4.

Got it now, thank you for your gracious helping hand, and time. ~MA
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top