MHB Proving Determinant of Mirror-Image Identity Matrix

  • Thread starter Thread starter A.Magnus
  • Start date Start date
  • Tags Tags
    Determinant
A.Magnus
Messages
138
Reaction score
0
I was given this $n \times n$ matrix $A$ which is a mirror-image of identity matrix, ie., its non-main diagonal consists of entries of $1$, the rest of entries are $0$. I need to find out the determinant of $A$. Having experimented with $n = 2, 3, ...,$ I observed that for $n = 2 + 4k$ or $n = 3 + 4k$, then $det(A) = -1$. Otherwise $det(A) = 1$. But observation alone is not enough, I need to prove it to $n$. I was told that using induction will do it, but I don't know how to do it. Any helping hand would be very much appreciated, thank you before hand for your graciousness. ~MA
 
Physics news on Phys.org
Let $d_n$ be the determinant of the $n\times n$ matrix. Then $d_1=1$ and $d_{n+1}=(-1)^nd_n$. We want to prove that
\[
d_n=\begin{cases}1,&n\equiv0,1\pmod{4}\\-1,&n\equiv2,3\pmod{4}.\end{cases}
\]
Denote this statement by $P(n)$. First we check $P(1)$. Then we have to prove that for all $n$, $P(n)$ implies $P(n+1)$. Here we have to consider four cases that correspond to four possible remainders when $n$ is divided by 4.
 
Whenever you "swap" two rows of a determinant, you multiply it by -1. It should be easy to see that you can go from this "mirror-image" to the identity matrix by a series of swaps of two rows, starting with swapping the first and last rows, etc. If the number of rows is even, say n= 2k, there will be k such swaps. If the number of rows is odd, say n= 2k+ 1, there are still k such swaps since the middle row stays where it is.
 
HallsofIvy said:
Whenever you "swap" two rows of a determinant, you multiply it by -1. It should be easy to see that you can go from this "mirror-image" to the identity matrix by a series of swaps of two rows, starting with swapping the first and last rows, etc. If the number of rows is even, say n= 2k, there will be k such swaps. If the number of rows is odd, say n= 2k+ 1, there are still k such swaps since the middle row stays where it is.

Thank you! ~MA
 
Evgeny.Makarov said:
Let $d_n$ be the determinant of the $n\times n$ matrix. Then $d_1=1$ and $d_{n+1}=(-1)^nd_n$. We want to prove that
\[
d_n=\begin{cases}1,&n\equiv0,1\pmod{4}\\-1,&n\equiv2,3\pmod{4}.\end{cases}
\]
Denote this statement by $P(n)$. First we check $P(1)$. Then we have to prove that for all $n$, $P(n)$ implies $P(n+1)$. Here we have to consider four cases that correspond to four possible remainders when $n$ is divided by 4.

Got it now, thank you for your gracious helping hand, and time. ~MA
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 20 ·
Replies
20
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
15
Views
5K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
Replies
34
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
5
Views
2K