MHB Proving Differentiability of f at $x_0$

  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Differentiability
Click For Summary
The discussion focuses on proving the differentiability of a function \( f \) at an inner point \( x_0 \) of its domain \( D \). It establishes that differentiability is equivalent to two conditions: the existence of a limit defining a constant \( \alpha \) and the existence of a continuous function \( r \) that satisfies specific properties around \( x_0 \). The participants confirm that defining \( r(x) \) as the difference quotient leads to its continuity at \( x_0 \), thereby proving the second condition. They also discuss how to show that each condition implies differentiability, concluding that both directions of the proof are valid. The conversation emphasizes the importance of understanding the definitions and implications of differentiability in complex analysis.
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :giggle:

I want to prove the following:

If $x_0$ is an inner point of $D$ ($x_0 \in \text{int } D$), so the differentiability of $f$ at $x_0$ is equivalent to each of the following two conditions.
(i) $\exists \alpha\in \mathbb{C}$ : $\forall \epsilon>0 \ \exists \delta>0\ \forall x\in B(x_0,\delta): \ |f(x)-f(x_0)-\alpha(x-x_0)|\leq \epsilon |x-x_0|$
(ii) There is a $\delta>0$, $\alpha\in \mathbb{C}$ and $r\in B(x_0, \delta)\rightarrow \mathbb{C}$ continuous at $x_0$, $r(x_0)=0$ such that $\forall x\in B(x_0, r): f(x)=f(x_0)+\alpha (x-x_0)+r(x)(x-x_0)$.
The definition is :

Let $D\subset \mathbb{C}$ and let $x_0\in D$ be an inner point of $D$, i.e. $D$ is a neighbourhood of $x_0$, i.e. there is $r>0$ with $B(x_0,r)\subset D$.
Let $f : D \rightarrow \mathbb{C}$.
$f$ is differentiable at $x_0$, if $\displaystyle{\lim_{x\rightarrow x_0}\frac{f(x)-f(x_0)}{x-x_0}}$ exists.
To show (i) to we define as $\alpha$ this limit? :unsure:
 
Physics news on Phys.org
mathmari said:
To show (i) to we define as $\alpha$ this limit?
Hey mathmari!

That seems as a good approach yes. (Nod)
 
Klaas van Aarsen said:
That seems as a good approach yes. (Nod)

So the direction $\Rightarrow$ is :

Suppose that $f$ is differentiable at $x_0$. Then $\displaystyle{\lim_{x\rightarrow x_0}\frac{f(x)-f(x_0)}{x-x_0}}$ exists, i.e. there is $\alpha\in \mathbb{C}$ such that $\displaystyle{\lim_{x\rightarrow x_0}\frac{f(x)-f(x_0)}{x-x_0}=\alpha}$, i.e. $\forall \epsilon>0 \ \exists \delta>0\ \forall x\in B(x_0,\delta)$ such that $\left |\frac{f(x)-f(x_0)}{x-x_0}-\alpha\right |\leq \epsilon \Rightarrow \left |f(x)-f(x_0)-\alpha (x-x_0)\right |\leq \epsilon |x-x_0|$.

So we have proven statement (i).

Could you give me a hint for (ii) ? :unsure:
 
mathmari said:
Could you give me a hint for (ii) ?
We have $f(x)-f(x_0)-\alpha(x-x_0)=r(x)(x-x_0)$ don't we? 🤔
 
Klaas van Aarsen said:
We have $f(x)-f(x_0)-\alpha(x-x_0)=r(x)(x-x_0)$ don't we? 🤔

How do we get that $r(x)$ ? :unsure:
 
mathmari said:
How do we get that $r(x)$ ?
We define it.
Let $r(x)=\frac{f(x)-f(x_0)-\alpha(x-x_0)}{x-x_0}$ and $r(x_0)=0$ on $B(x_0,\delta)$.
Can we prove that $r$ is continuous?
What did continuous mean again? 🤔
 
Klaas van Aarsen said:
We define it.
Let $r(x)=\frac{f(x)-f(x_0)-\alpha(x-x_0)}{x-x_0}$ and $r(x_0)=0$ on $B(x_0,\delta)$.
Can we prove that $r$ is continuous?
What did continuous mean again? 🤔

We have that $$\lim_{x\rightarrow x_0}r(x)=\lim_{x\rightarrow x_0}\frac{f(x)-f(x_0)-\alpha(x-x_0)}{x-x_0}\lim_{x\rightarrow x_0}=\frac{f(x)-f(x_0)}{x-x_0}-\alpha=\alpha-\alpha=0=r(x_0)$$ So $r$ is continuous at $x_0$. :unsure:

That means that we have proven in that way the statement (ii).
 
Last edited by a moderator:
As for the other direction, do we have to show that from (i) the differentiability follows and from (ii) the differentiability follows also?

:unsure:
 
mathmari said:
As for the other direction, do we have to show that from (i) the differentiability follows and from (ii) the differentiability follows also?
Yep. 🤔
 
  • #10
Klaas van Aarsen said:
Yep. 🤔

We suppose that (i) holds. Then $ |f(x)-f(x_0)-\alpha(x-x_0)|\leq \epsilon |x-x_0| \Rightarrow \left |\frac{f(x)-f(x_0)-\alpha(x-x_0)}{x-x_0}\right |\leq \epsilon \Rightarrow \left |\frac{f(x)-f(x_0)}{x-x_0}-\alpha\right |\leq \epsilon $.
This is the definition of $\lim_{x\rightarrow x_0}\frac{f(x)-f(x_0)}{x-x_0}=\alpha$, which means that $f$ is differentiable in $x_0$.

We suppose that (ii) holds. Then $ f(x)=f(x_0)+\alpha (x-x_0)+r(x)(x-x_0) \Rightarrow \frac{f(x)-f(x_0)}{x-x_0}=\alpha +r(x)$. Taking the limit we get $\lim_{x\rightarrow x_0}\frac{f(x)-f(x_0)}{x-x_0}=\lim_{x\rightarrow x_0}(\alpha +r(x))=\alpha$, which means that $f$ is differentiable in $x_0$. Is everything correct? :unsure:
 
  • #11
Looks correct to me. (Nod)
 
  • #12
Klaas van Aarsen said:
Looks correct to me. (Nod)

Great! Thank you very much! (Star)
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
Replies
1
Views
2K
  • · Replies 38 ·
2
Replies
38
Views
5K
Replies
32
Views
3K
Replies
2
Views
2K