MHB Proving disjoint of Kernel and Image of a linear mapping

rputra
Messages
35
Reaction score
0
I am working on a problem that goes like this:

Show that $Ker (F) \cap I am (F) = \{0\}$ if $F: W \rightarrow W$ is linear and if $F^4 = F.$

I have the solution but there is one step which I need help: (the delineation is mine)

(1) Suppose that there exists $x$, such that $x \in Ker(F) \cap Im(F)$
(2) From $x \in Ker(F)$, we have $F(x) = 0$, by definition of kernel of a mapping
(3) From $x \in Im(F)$, there exists $w \in W$, such that $F(w) = x$
(4) Then we have
$$\begin{align}
F^4(w) &= F^3(F(w))\\
&= F^3(x)\\
&= F^2(F(x))\\
&= F^2(0)\\
&= 0.
\end{align}$$
(5) Since we have $F^4(w) = 0, F^4(w) = F(w)$, and $F(w) = x$, we conclude that $x = 0$. Hence $Ker(F) \cap Im(F) = \{0\}$, as desired.

Here is the one step I did not understand: In the last line of step (4), why is that $F^2(0) = 0$? Any help would be very much appreciated. Thank you for your time in advance.
 
Physics news on Phys.org
Tarrant said:
I am working on a problem that goes like this:

Show that $Ker (F) \cap I am (F) = \{0\}$ if $F: W \rightarrow W$ is linear and if $F^4 = F.$

I have the solution but there is one step which I need help: (the delineation is mine)

(1) Suppose that there exists $x$, such that $x \in Ker(F) \cap Im(F)$
(2) From $x \in Ker(F)$, we have $F(x) = 0$, by definition of kernel of a mapping
(3) From $x \in Im(F)$, there exists $w \in W$, such that $F(w) = x$
(4) Then we have
$$\begin{align}
F^4(w) &= F^3(F(w))\\
&= F^3(x)\\
&= F^2(F(x))\\
&= F^2(0)\\
&= 0.
\end{align}$$
(5) Since we have $F^4(w) = 0, F^4(w) = F(w)$, and $F(w) = x$, we conclude that $x = 0$. Hence $Ker(F) \cap Im(F) = \{0\}$, as desired.

Here is the one step I did not understand: In the last line of step (4), why is that $F^2(0) = 0$? Any help would be very much appreciated. Thank you for your time in advance.

Hey Tarrant!

For a linear transformation $F$, we have that $F(\mathbf 0)=\mathbf 0$.
Proof
Suppose $F(\mathbf 0)\ne \mathbf 0$, then for any $\mathbf u$ we have that $F(\mathbf 0) = F(0\cdot \mathbf u)=0\cdot F(\mathbf u)=\mathbf 0$. Contradiction. Therefore $F(\mathbf 0)=\mathbf 0$.
 
I like Serena said:
Hey Tarrant!

For a linear transformation $F$, we have that $F(\mathbf 0)=\mathbf 0$.
Proof
Suppose $F(\mathbf 0)\ne \mathbf 0$, then for any $\mathbf u$ we have that $F(\mathbf 0) = F(0\cdot \mathbf u)=0\cdot F(\mathbf u)=\mathbf 0$. Contradiction. Therefore $F(\mathbf 0)=\mathbf 0$.

Ok, thanks. It follows the definition of linear mapping: For $c$ an arbitrary real number, $F(cx) = cF(x)$ which leads to $F(0) = 0$ for $c = 0.$ Thank you again for your time.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
Back
Top